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1 Introduction

The study of alliances in graphs was first introduced by Hedetniemi, Hedet-
niemi and Kristiansen [4]. They introduced the concepts of defensive and of-
fensive alliances, global offensive and global defensive alliances and studied
alliance numbers of a class of graphs such as cycles, wheels, grids and com-
plete graphs. Haynes et al. [2] studied the global defensive alliance numbers
of different classes of graphs. They gave lower bounds for general graphs,
bipartite graphs and trees, and upper bounds for general graphs and trees.
Rodriquez-Velazquez and Sigarreta [8] studied the defensive alliance number
and the global defensive alliance number of line graphs. A characterization
of trees with equal domination and global strong defensive alliance numbers
was given by Haynes, Hedetniemi and Henning [3]. Rodriguez-Velazquez and
Sigarreta [5] gave bounds for the defensive, offensive, global defensive, global
offensive alliance numbers in terms of the algebraic connectivity, the spectral
radius, and the Laplacian spectral radius of a graph. They also gave bounds
on the global offensive alliance number of cubic graphs in [6] and the global
offensive alliance number for general graphs in [7].

Balakrishnan et al. [1] studied the complexity of global alliances. They showed
that the decision problems for global defensive and global offensive alliances
are both NP-complete for general graphs.

Given a simple graph G = (V, E) and a vertex v ∈ V , the open neighborhood
of v, N(v), is defined as N(v) = {u : (u, v) ∈ E}. The closed neighborhood of
v, denoted by N [v], is N [v] = N(v) ∪ {v}.

Definition 1 A set S ⊂ V is a defensive alliance if for every v ∈ S, |N [v] ∩
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S| ≥ |N(v) ∩ (V − S)|. A defensive alliance S is called a global defensive
alliance if S is also a dominating set.

Definition 2 A set S ⊂ V is an offensive alliance if for every v ∈ V − S,
|N [v] ∩ S| ≥ |N [v] − S|. An offensive alliance S is called a global offensive
alliance if S is also a dominating set.

Definition 3 The global defensive(offensive) alliance number of G is the car-
dinality of a minimum size global defensive(offensive) alliance in G, and is
denoted by γa(G)(γo(G)). A minimum size global defensive(offensive) alliance
is called a γa(G)-set (γo(G)-set).

In this paper, we study the global defensive and global offensive alliance num-
bers of trees. We find the asymptotic order of global defensive alliance number
of complete k-ary trees, and compute exactly the global offensive alliance num-
ber. We also give a sharp bound on the difference between the global offensive
and global defensive alliance numbers for a general tree.

The rest of the paper is organized as follows. In Section 2, we find the global
defensive alliance number of complete binary and complete ternary trees. We
also find tight bounds for the global defensive alliance number of complete
k-ary trees, and determine the asymptotic order. In Section 3, we find the
global offensive alliance number of complete k-ary trees. We also compare the
global offensive and global defensive alliance numbers of a general tree.

2 Defensive Alliances in Complete k-ary Trees

A k-ary tree is a rooted tree where each node has at most k children. A complete
k-ary tree is a k-ary tree in which all the leaves have the same depth and all
the nodes except the leaves have k children. We let Tk,d be the complete k-ary
tree with depth/height d. The proofs of the following theorems are omitted.

Theorem 1 Let n be the order of T2,d. Then γa(T2,d) = ⌈2
5
n⌉ for any d.

Corollary 1 If d ≡ 2(mod 4) or d ≡ 3(mod 4) then there is a unique γa(T2,d)-
set. If d ≡ 0(mod 4) or d ≡ 1(mod 4) then there are exactly two γa(T2,d)-sets.

Theorem 2 If d ≥ 4 then γa(T3,d) = ⌊19
36

n⌋ if d is odd and γa(T3,d) = ⌈19
36

n⌉
if d is even.

Theorem 3 27
64

n − 2 ≤ γa(T4,d) ≤
27
64

n + 2.

When k is large, the methods used to prove the above theorems are difficult to
apply. Therefore, for general k, we give upper and lower bounds for γa(Tk,d).
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Theorem 4 For d ≥ 2, and k ≥ 2,

kd−1

⌊

k − 1

2

⌋

+ kd−1 + kd−2 ≤ γa(Tk,d) ≤ kd−1

⌊

k − 1

2

⌋

+ kd−1 + kd−2 + kd−3.

It follows that γa(Tk,d) ∼ kd−1
⌊

k−1
2

⌋

, where the asymptotics is taken to be

in terms of k. Since the number of vertices of Tk,d is n = kd+1−1
k−1

we get
γa(Tk,d) ∼ n

2
when k tends to infinity. For offensive alliances we have the

following result, the proof of which is omitted.

3 Offensive Alliances vs. Defensive Alliances in general trees

Theorem 5 Let Tk,d be the complete k-ary tree with depth d ≥ 1. Then,

γo(Tk,d) =
⌊

n
k+1

⌋

.

Note that γo(Tk,d) ∼
n
k

with respect to k. As k becomes very large the difference
between γa(Tk,d) and γo(Tk,d) approaches n/2. In general, we are interested if
this difference can be larger for other trees. In fact, we have the following
theorem.

Theorem 6 For any tree T of order n, γa(T ) ≤ γo(T ) + n
2
.

Proof 1 Root the tree T at a vertex of largest eccentricity(the eccentricity
of a vertex x is equal to maxy∈V (G)d(x, y)). Let T have a depth d, and let v
be a vertex at depth d − 2. Let u be v’s parent. We are going to proceed by
induction on n. We may assume that diam(T ) ≥ 3. Otherwise, T is a star
and the theorem holds (this also establishes the base case).
Let Tv be the subtree of T rooted at vertex v. Let T

′

= T −Tv be the subtree of
T obtained by removing all the vertices of Tv, and let |T

′

| = n
′

. Define P to be
the set of children of v in T which are support vertices. Denote by L the set of
children of v which are leaves. By assumption on the diameter of T , |P | ≥ 1.
Let yi denote the number of children of each vertex in P , 1 ≤ i ≤ |P |. The
proofs of the following two claims are omitted due to space restrictions.

Claim 1 γo(T
′

) ≤ γo(T ) − |P |.

Claim 2 γa(T ) ≤ γa(T
′

) + k where k = 1 + |P | + max
(

⌈ |L|−|P |
2

⌉, 0
)

+
∑|P |

i=1⌊
yi−1

2
⌋.

By the last claim and the induction hypothesis we have

γa(T ) ≤ γa(T
′

) + k ≤ γo(T
′

) +
n

′

2
+ k.
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What is left to prove is that γo(T
′

) + n
′

2
+ k ≤ γo(T ) + n

2
. By the first claim,

it is sufficient to prove that k − ⌊n−n
′

2
⌋ ≤ |P |. Since |P | ≥ 1, we have that

1+max

(⌈

|L| − |P |

2

⌉

, 0

)

+
|P |
∑

i=1

⌊

yi − 1

2

⌋

≤ 1+

⌊

|L|

2

⌋

+
|P |
∑

i=1

⌊

yi − 1

2

⌋

≤

⌊

n − n
′

2

⌋

,

as required.

The above bound is best possible. Consider K1,n−1 where n is odd. Then
γo(K1,n−1) = 1 and γa(K1,n−1) = 1 + n−1

2
.

In a bipartite graph, each partite set forms a global offensive alliance. It follows
that γo(T ) ≤ n

2
for any tree T . Therefore, |γa(T ) − γo(T )| ≤ n

2
. However, we

believe the following stronger result is true: for any n-vertex tree T , γo(T ) ≤
γa(T ) + n

6
. This conjecture, if true, is essentially best possible because of the

following theorem, the proof of which we omit.

Theorem 7 For any constant C > 0, there exists an n-vertex tree T with
γo(T ) ≥ γa(T ) + n

6
− C.
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