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1 Introduction

Given a bipartite graph G = (S, T, E), the k-clustering Minimum Biclique
Completion Problem (k-MinBCP) consists of finding k bipartite subgraphs
(clusters), such that each vertex i of S appears in exactly one subgraph, every
vertex j in T appears in each cluster in which at least one of its neighbors
appears, and the total number of edges that would complete each subgraph
into a complete bipartite subgraph, i.e., a biclique, is minimized. This problem
was introduced in [1], as an application of the problem of bundling channels in
multicast transmissions. k-MinBCP is NP-Hard, and its approximability, to
the best of our knowledge, remains unknown. In the literature, k-MinBCP is
tackled with two approaches: in [1], it is solved with an Integer Programming
approach, a Bilinear Programming formulation and its standard linearization;
and in [2], it is solved with an hybrid Constraint Programming–Semidefinite
programming approach.

In this work, we present a Branch-and-Price algorithm that embeds a new
meta-heuristic to find integer solutions, and a non-trivial branching rule. Com-
putational results show that our algorithm outpeforms the state-of-the-art
approaches to this problem.
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2 Problem Formulation

In this work, we use a Column Generation formulation that is similar to the
one proposed in [1]: the master problem is a set partitioning problem where
each column represents the subset of vertices of S that induces a cluster t. The
cost ct of each cluster t is equal to the number of edges that would complete
the corresponding subgraph into a biclique. Let λt be a 0–1 variable, equal to
1 if the cluster t is part of the solution, and 0 otherwise. Let ct be the cost of
the t-th cluster. Let T be the collection of every possible cluster, and let St

be the subset of vertices of S that form the t-th cluster. The master problem
formulation is as follows:

min
∑

t∈T

ctλt (1)

s.t.
∑

t∈T |i∈St

λt = 1 ∀ i ∈ S (2)

∑

t∈T

λt = k (3)

λt ∈ {0, 1} ∀ t ∈ T (4)

Constraints (2) is the partitioning constraints, one for each vertex in S. Con-
straint (3) is the cardinality constraint on the number of cluster to be selected.
Let πi and ν be the dual multipliers of constraints (2) and (3), respectively.
Then, the pricing subproblem is the problem of finding a vertex– and edge–
weighted biclique of negative reduced cost. The vertex weights are given by
the dual multipliers πi, while the edge weights gives the number of edges that
would complete the subgraph into a biclique. The pricing subproblem is as
follows:

min
∑

{i,j}∈Ē

zij −
∑

i∈I

πixi − ν (5)

s.t. zij ≥ xi + xl − 1 ∀{i, j} ∈ Ē, ∀{l, j} ∈ E (6)

xi, zij ∈ {0, 1} ∀i ∈ I, ∀{i, j} ∈ Ē (7)

Constraints (6) force the binary variable zij to be 1 if the corresponding edge
is part of the biclique, and 0 otherwise. Note that an edge belongs to a biclique
if it exists at least a pair of vertices i and l both in S such that a vertex j ∈ T

exists with (i, j) ∈ Ē and (l, j) ∈ E.

3 Branch-and-Price Implementation

Differently from [1], that uses the column generation only to compute lower
bounds, we have embedded the column generation into a branch-and-price
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exact algorithm. The branch-and-price we have implemented is based on three
key feature: (i) a Variable Neighborhood Search (VNS) heuristic that computes
very efficient primal solution, providing tight upper bounds; (ii) a slightly
different VNS heuristic that compute nearly-optimal solutions for the pricing
subproblem, and (iii) a non-trivial branching rule.

The VNS heuristic used to find integer solutions, hence yielding upper bounds,
explores basically three different neighborhoods: (i) moving a single vertex
from one subgraph to another subgraph, (ii) swapping two vertices in two
different subgraphs, and (iii) selecting two vertices in two different subgraphs
and moving them into new subgraphs. In addition, after each cycle of VNS,
we perform a search in the space of the unfeasible solutions, by augmenting
by one the number of clusters. Then, a greedy procedure is used to recover a
feasible solution. Although the search in the unfeasible space is very simple,
it does improve the performance of our meta-heuristic.

In our Column Generation approach to k-MinBCP the bottleneck is the solu-
tion of the pricing subproblem. We have implemented two methods for solving
the pricing problem. The first method is again a VNS heuristic very similar to
the heuristic used to find integer solutions to k-MinBCP: we basically look
for a single subgraph with negative reduced cost. Whenever the heuristic is
unable to find a negative reduced cost solution, we use an integer program-
ming approach to find any solution of negative reduced cost, not necessarily
the solution of minimum cost.

The meta-heuristic and the Column Generation are used to obtain upper and
lower bounds within our branch-and-price algorithm. Though many instances
are solved at the root node (the upper bounds obtained with our VNS heuristic
are equal to the lower bounds obtained by Column Generation), this is not
always the case. Therefore, we have devised a branching rule that exploits the
problem structure. Once a pair of vertices i and j of S appearing in a fractional
solution of the restricted master problem are selected, the algorithm adds two
branching constraints: either i and j must appear in the same cluster, or they
cannot. In the first branch, we merge the two nodes in a single new node,
obtaining a new instance of the same problem. In the second branch, in order
to force two vertices to appear in different clusters, we add the corresponding
constraints to the pricing subproblem.

4 Computational Results

We tested our branch-and-price algorithm on two classes of instances: the
first set of instances consists of random bipartite graphs, and the second set of
instances extracted by the MovieLens data set (http://movielens.umn.edu).
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Table 1

|I| |J| k UB LB Opt N Time SCIP

15 15 3 72 72 72 0 6.38s 11s

15 15 4 59 59 59 0 2.92s 370s

15 15 5 50 50 50 0 4.14s –

18 18 3 109 109 109 0 26s 137s

18 18 4 96 96 96 0 20s –

18 18 5 86 85 86 8 47s –

20 20 3 156 154 156 12 275s –

20 20 4 139 137 138 8 206s –

20 20 5 123 121 123 38 175s –

The branch-and-price algorithm is implemented in Comet [4], using lp solve

as linear solver. Extensive computational results are reported in [3].

Table 1 shows a summary of the comparison of the computational results ob-
tained with our branch-and-price algorithm and with the ILP solver SCIP. The
table gives the results for the most challenging instances, that are instances
randomly generated with |S| = |T |. The first three columns give the |S|, |T |,
and the number of required cluster k. Then, the table reports the UB obtained
with our VNS heuristic at the root node, the lower bound LB obtained via
column generation at the root node, the optimal solution Opt obtained via
Branch-and-Price, the number of branching nodes N, and the computation
time in seconds. For the SCIP solver, we just report the computation time in
seconds. Note that our branch-and-price algorithm is able to solve instances
of dimension up to 20× 20. In addition, we remark that previous work solved
only instances up to 10 × 10 in [1] and 12 × 12 in [2].
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