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1 Introduction

Many relevant problems can be described and successfully solved using graph-
based models. For instance, the side-chain placement problem in biology, the
choice of efficient communication protocols in management science, backbone
design in telecommunication networks and data mining applications share a
common structure: they all require to find a maximum weighted clique in a
suitable graph [1].
We tackle the Max Edge Weighted Clique problem with Multiple choice Con-

straints (MEWCMC). Given a graph with weights on both vertices and edges,
and a partition of the vertex set, the MEWCMC asks to find a maximum
weight clique, choosing one vertex for each class of the partition.
The classical Max Weighted Clique problem has been studied from many as-
pects. State of the art algorithms include [3], [4] and [5]. The version of the
problem involving multiple choice constraints, instead, has been tackled only
recently [2].
In this paper we first introduce models for the MEWCMC based on Binary
Quadratic Programming (BQP) and Integer Linear Programming (ILP); we
also introduce a model suitable to obtain a semidefinite relaxation of the
MEWCMC. Since using commercial solvers on these models allows to solve
only small size instances, we present an exact algorithm exploiting a semidefi-
nite relaxation of the MEWCMC, combinatorial bounding, rounding and prob-
lem reduction procedures in a branch-and-bound framework. We also describe
a Tabu Search heuristic, able to quickly find good quality solutions.
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2 Models

It is given a graph G(V, E), where V is a set of n vertices and E ⊆ V ×V is a set
of ℓ edges. It is also given a partition K = {V1, V2, .., Vm} of V . Let wE : E → R

and wV : V → R be two functions mapping respectively every edge and every
vertex to a weight value. The MEWCMC consists in finding a clique in G,
that is finding a set of vertices M ⊆ V , such that (i, j) ∈ E ∀i, j ∈ M , having
maximum weight z(M) = 1

2

∑
vi∈M

∑
vj∈M wij . Furthermore, in order to fulfill

multiple choice constraints, M has to include exactly 1 vertex for each class,
that is |M ∩ Vk| = 1 ∀Vk ∈ K.
By introducing a binary variable xi for each vertex i ∈ V , such that xi takes
value 1 if vertex i ∈ M , 0 otherwise, we can formulate the MEWCMC as the
following BQP problem:

maximize
∑

i∈V

∑

j∈V

wijxixj (1)

s.t.
∑

i∈Vk

xi = 1 ∀k ∈ K (2)

xi ∈ {0, 1} ∀i ∈ V. (3)

Multiple choice constraints (2) impose that exactly one vertex is selected for
each class Vk ∈ K. This model can be either directly used by general purpose
BQP solvers, or linearized using standard techniques, obtaining an ILP prob-
lem, suitable to be optimized by standard solvers. Both approaches, however,
show to fail as the size of instances increases, mainly due to the poor quality
of the continuous relaxation of both models.
Hence, we derive a matrix-based formulation of the problem as follows. First
we define a matrix W , where each element wij with i 6= j is the weight as-
sociated to edge (i, j) ∈ E and each element wii is the weight associated to
vertex i ∈ V , and we introduce a square matrix Y of variables yij of dimension
n, where yij = xixj for each i, j ∈ V . The MEWCMC can then be stated as
follows:

maximize W • Y (4)

s.t. rank(Y ) = 1 (5)
∑

k

Sk • Y = 1 k = 1, ..., m (6)

Y � 0 (7)

yij ∈ {0, 1} (8)

where • is the Frobenius matrix product, rank(Y ) is the rank of matrix Y , Y �
0 imposes Y to be positive semidefinite, I is the identity matrix of dimension
n. Constraints (5) and (7) guarantee that matrix Y can be represented as the
product xxT , and constraints (8) guarantee that each value in the matrix is
binary. Inequalities (6) represent multiple choice constraints: matrices Sk are
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built in such a way that

∑

i∈Vk

Yii =
∑

i∈V

∑

j∈V

(Sk)ijYij = Sk • Y = 1 ∀Vk ∈ K,

that is, having value 1 only on some diagonal elements, and value 0 elsewhere.

3 Algorithms

We devised an exact branch-and-bound algorithm exploiting formulation (4)–
(8) and combinatorial arguments. In the remainder we sketch its main com-
ponents.
Dual bounds. By considering model (4)–(8) and relaxing constraints (5) and
(8) we obtain a semidefinite programming problem; this is a special case of
convex optimization problem, that can be solved very efficiently by special
purpose algorithms [6]. The relaxed model obtained in this way is strength-
ened in two ways. First, since one vertex has to be selected from each class of
the partition, m vertices have to be selected overall; therefore, the constraint
I • Y = m can be added to the formulation. Second, we state constraints
in stronger forms, by disaggregating and exploiting some properties of BQP
problems. At the same time, we consider the following value

DBc =
1

2

∑

Vs∈K

max
i∈Vs

{wii +
∑

Vt∈K,t6=s

max
j∈Vt

{
wjj

m − 1
+ wij}}; (9)

and we prove by combinatorial arguments that expression (9) gives a valid
dual bound to the MEWCMC. The best of the two bounds is kept as the final
dual bound.
Primal bounds. At each node of the branch-and-bound tree we try to find
good feasible solutions by (a) rounding the optimal solution of the semidefinite
relaxation (b) correcting the solutions given by the combinatorial bounding
procedure (9). Both methods are able to find good solutions in the early nodes
of the branch-and-bound tree. We also devised a Tabu Search heuristic; it
works as follows. We start from a clique M either corresponding to a known
feasible solution or obtained by selecting a random vertex for each class of the
partition K; at each step we explore the neighborhood given by all solutions
obtained by replacing one the vertices in M by a different vertex of the same
class, moving to the best solution in the neighborhood. We keep two tabu
lists: the first keeps track of vertices recently removed from M , that cannot
be selected again; the second keeps track of vertices recently introduced in
M , that cannot be removed. We stop after a fixed number of steps. Prelimi-
nary experiments shows that by setting the length of the first tabu list to 8,
that of the second tabu list to 1 and the maximum number of steps to 1000,
this heuristic is able to produce optimal solutions on a large set of instances;
besides being useful on its own, this heuristic is used to obtain tight primal
bounds at the root node of the branching tree.
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Branching. The diagonal elements of Y basically represent how much any
vertex is (fractionally) selected in the semidefinite relaxation solution. There-
fore, when primal and dual bounds do not match, we perform binary branching
by selecting the class Vk having the highest number of these fractional entries;
then we try to partition the vertices of class Vk in two subsets V l

k and V r
k ,

having the most balanced sum of fractional entries. In the left branch and
right branches we respectively forbid to choose in the clique any vertex of the
set V l

k , and any vertex of the set V r
k . We visit the branching tree in a best

bound order.
Performance improving techniques. We improved the performances of
our algorithm by (a) switching to complete enumeration when, due to the
remotion of forbidden vertices, the size of the subproblem gets small enough
(b) performing problem reduction tests, that is trying to fix each vertex to
be part of the solution, computing the combinatorial dual bound on the re-
maining subproblem and removing from the problem such a vertex if the dual
bound computed in this way is worse than the best known primal bound.

4 Experimental results

We implemented our algorithms in C, we used ILOG CPLEX 11.2 as both
ILP and BQP solver, and DSDP5 as semidefinite programming solver. We
performed experiments on two datasets. Dataset S1 is drawn from [2]; it is
composed by 168 instances of four types, having weights on vertices and edges
randomly drawn in different ranges. These instances require the optimization
on graphs with up to 65 vertices. Dataset S2, instead, consists of 165 new in-
stances of three types.The number of vertices of the graphs in these instances
range from 30 to 300. Our experiments ran on a Centrino Core 2 3GHz PC,
equipped with 2GB of RAM, in Linux 32 bit environment. A full description
of Datasets and computational experiments is available online 1 .
Our experimental campaign allowed us to find that (a) the tabu search al-
gorithm is able to find the optimal solution on 79.76% of the instances in
Dataset S1, and on 88.48% of the instances in Dataset S2; (b) the BQP solver
of CPLEX using formulation (1)–(3) is not competitive with other methods
(c) the exact algorithm proposed in [2] is outperformed by both CPLEX and
our algorithm on both datasets (d) using the best of our ILP formulations,
CPLEX could solve only 44% of the instances in Dataset S2 within a time
limit of one hour, while our exact algorithm solved 77% of them; when both
CPLEX and our algorithm terminate within the time limit, our algorithm is
up to three orders of magnitude faster, and when none of them terminates, the
remaining gap between primal and dual bounds for our algorithm is a fraction
of that of CPLEX.

1 http://www.dti.unimi.it/∼ceselli/EWCMC.html
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[3] B. Alidaee, F. Glover, G. Kochenberger, H. Wang (2007) “Solving the maximum
edge weight clique problem via unconstrained quadratic programming”,
European Journal of Operational Research, 181(1): 592–597.

[4] M. M. Sørensen (2004) “New facets and a branch-and-cut algorithm for the
weighted clique problem”, European Journal of Operational Research, 154(1):
57–70.

[5] M. Hunting, U. Faigle, W. Kern (2001) “A Lagrangian Relaxation Approach
to the Edge-Weighted Clique Problem”, European Journal of Operational
Research, 131

[6] S. J. Benson, Y. Ye (2005) “DSDP5: Software for Semidefinite Programming”,
Technical report, Mathematics and Computer Science Division, Argonne
National Laboratory.

47


