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Abstract

The game chromatic number of a graph is defined using a two players game. In 1993, Faigle et al. proved
that the game chromatic number of trees is at most four. In this paper we investigate the problem of
characterizing those trees with game chromatic number three, and setttle this problem for 1-caterpillars.
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1 Introduction

The game chromatic number of a graph G, denoted by χg(G), is defined through a coloring game

with two players Alice and Bob and a set of k colors. Each move by either player consists of coloring
an uncolored node of G with a color i of the set. Adjacent vertices must be colored by distinct colors.
The game ends if no more vertices can be colored. Alice wins the game if all vertices are colored.
Otherwise, Bob wins.
The game chromatic number χg(G) is the least number of colors for which Alice has a winning
strategy in this game. This parameter was introduced by Bodlaender [1] (see also [3] for a recent
survey). Since then the problem has attracted considerable attention and has been studied for
various classes of graphs [4][5]. For instance, it is proved by Zhu [6] that if P is a planar graph then
χg(P ) ≤ 17. Faigle et al. [2] proved that the game chromatic number of every tree is at most four.
A natural question in this framework is to characterize the trees with given game chromatic number
k, for 1 ≤ k ≤ 4. Since the answer is obvious for k = 1, 2, our aim is to characterize the set of trees
with game chromatic number three. The general characterization seems to be a difficult problem.
Therefore, we restrict ourselves to the set of caterpillars and settle the problem for 1-caterpillars.
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2 Definitions and properties

A tree is called a caterpillar if a path remains after the removal of all its leaves. This path is called
the spine of the caterpillar. A 1-caterpillar is a caterpillar such that every vertex of the spine is a
neighbor of exactly one leaf, except for the two extremities of the spine that have two leaves.

Since the game chromatic number of a caterpillar C is at most 4, we will play with three colors
and determine whether Alice can complete the coloration of C or not. If it is possible, we will say
that Alice wins and otherwise that Bob wins. We denote by [C, c] a caterpillar C equipped with a
partial coloring c of its vertices. Such a caterpillar will be simply denoted by C whenever the partial
coloring c is clear from the context. To compute the game chromatic number of caterpillars, we have
to know for any [C, c] not only whoever wins if Alice begins, but also if Bob begins.

We thus define the outcome of a partially colored caterpillar C, denoted by o(C), as follows:

(i) o(C) = B if Bob wins whoever starts the game;

(ii) o(C) = P if the next player loses (so the Previous one wins);

(iii) o(C) = N if the Next player wins;

(iv) o(C) = A if Alice wins whoever starts the game.

We denote by Opt(C) the set of options of C, that is the set of partially colored caterpillars that
can be obtained from C after one move. If C has an option with outcome X , we say that C has an
X -option. We extend the definition of outcome to a set of caterpillars C: o(C) = {o(C), C ∈ C}.

Proposition 2.1 Let C be a not totally colored caterpillar.

(i) o(C) = B ⇔ o(Opt(C)) ∈
{

{B} , {N ,B}
}

;

(ii) o(C) = P ⇔ o(Opt(C)) = {N};

(iii) o(C) = N ⇔ o(Opt(C)) contains P, or contains A and B;

(iv) o(C) = A ⇔ o(Opt(C)) ∈
{

{A} , {A,N}
}

.

Since we will need to consider outcomes of disjoint unions of caterpillars, we need some properties
to compute o(C1 ∪C2) according to o(C1) and o(C2) (where C1 ∪C2 denotes the disjoint union of C1

and C2).
We call the signed outcome of C the outcome X of C signed by the parity of the number of uncolored
nodes of C, denoted by o′(C) = X0 or X1.

Proposition 2.2 Firstly, if o(C1) = B or o(C2) = B then o(C1 ∪ C2) = B. Otherwise, we define an

addition function of signed outcomes, denoted by ”⊕”, that satisfies o′(C1 ∪ C2) = o′(C1) ⊕ o′(C2),
and is given by the following table:



⊕ P0 P1 N0 N1 A0 A1

P0 P0 B1 B0 N1 P0 N1

P1 B1 B0 B1 N0 P1 N0

N0 B0 B1 B0 B1 N0 N1

N1 N1 N0 B1 B0 N1 N0

A0 P0 P1 N0 N1 A0 A1

A1 N1 N0 N1 N0 A1 A0

We note � the relation on the set of outcomes {B,P,N ,A} such that:

(i) A � N � B

(ii) P and every another outcome X are incomparables.

If T and U are two partially colored caterpillars, we say that T is a subgraph of U and note
T ⊆ U if and only if V (T ) ⊆ V (U), E(T ) ⊆ E(U) and ∀v ∈ V (T ), cT (v) = cU(v) (where cT (v) is the
color of v in T ).

Proposition 2.3 Let T and U be two partially colored caterpillars. If T ⊆ U then o(T ) � o(U)

Let C be a partially colored caterpillar. Observe that if C has an uncolored vertex v having three
neighbours colored with distinct colors, then the outcome is B (since v cannot be colored). Similary,
if C has a colored node v with degree k ≥ 2, the forest C ′ obtained from C by splitting v into k

colored leaves with the same color than v, each linked to a neighbour of v (thus creating k connected
components) is equivalent to C (we mean o′(C ′) = o′(C)). Finally, if C has an uncolored node v

with two leaves colored with the same color, the caterpillar C ′ obtained from C by deleting one of
these two leaves is equivalent to C.

3 The family of 1-caterpillars

Let C be a partially colored 1-caterpillar whose spine s1s2 . . . sℓ contains no colored vertices. Moreover
let s0 (resp. sℓ+1) be one of the two leaves connected to s1 (resp. sℓ). The leaves connected to s1

or sℓ are the ends of C. We associate with C a word w(C) = w0 . . . wℓ+1 on the alphabet {z, 1, 2, 3}
defined as follows: w0 is the color of s0 if it is colored or z otherwise (the same is true of wℓ+1), and
for every i, 1 ≤ i ≤ ℓ, wi is the color of the leaf connected to si, or z if this leaf is not colored. For
instance, the following caterpillar is associated with the word 1zz2z2.



Using properties of outcomes and subgraphs, we prove the following results.

Theorem 3.1 Let C be a 1-catepillar with w(C) = aznb and a, b ∈ {1, 2, 3}. The outcome of C is

given by the following table:

n 1 2 3 4 5 6 7 8 9

o(C) AN A N A N A N AN N

n 10 11 12 13 14 15 16 17 ≥ 18

o(C) N N N N NB N B NB B

where XY stands for X if a = b and Y otherwise.

The proof relies on several lemmas which consider the outcomes of some 1-caterpillars with
particular partial colorings. We proceed by studying a family F of caterpillars (for instance az2nbb

with n ≥ 0) and compute the value n defined as the smallest size of a caterpillar with outcome N
(resp. B), so that every smaller caterpillar in F has outcome A (resp. A or N ). We also have to
check that no 1-caterpillar of this family has outcome P.

Theorem 3.2 Let C an uncolored 1-caterpillar with n nodes of degree 3.

(i) If n ≥ 28 then o(C) = B

(ii) If 23 ≤ n ≤ 27 then o(C) = N

(iii) Otherwise o(C) = A
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