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1 Introduction

Resource allocation such as maximizing link capacity or minimizing power con-
sumption in a wireless OFDMA network are commonly formulated as mathe-
matical programs [1]. These programs usually involve random variables in the
input data. In this paper, we propose a (0-1) stochastic quadratic formulation.
The study is made on the basis of an OFDMA quadratic model [4] in which a
probabilistic constraint based approach is considered [2]. Then, a semidefinite
programming (SDP) relaxation is derived to solve the stochastic quadratic
model. The paper is organized as follows: Section 2 presents the stochastic
quadratic formulation. Section 3 presents the SDP relaxation. Finally, section
4 concludes the paper.

2 Probabilistic formulation

We consider an OFDMA network composed by a base station (BS) and several
mobile users. The BS has to assign a set of N sub-carriers to a set of K users
using a modulation size of c ∈ {1, . . . , M} bits in each sub-carrier. The goal
is to minimize the total power consumption in the network. We consider the
following probabilistic constrained model [4]:
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SQIP0: min{xk,n,yn,c}
∑K

k=1

∑N
n=1

∑M
c=1

P c
k,nxk,nyn,c (1)

st: P{
∑N

n=1
xk,n

[

∑M
c=1

c · yn,c

]

≥ Rk} ≥ (1 − αk), ∀k (2)
∑K

k=1
xk,n ≤ 1 ∀n (3)

∑M
c=1

yn,c ≤ 1 ∀n (4)

xk,n, yn,c ∈ {0, 1} (5)

Here, the objective function represents the total power consumption. The first
constraint corresponds to a chance constraint where αk is the risk to be taken
for each user k. In this model, we consider separated chance constraints. The
second constraint imposes that each sub-carrier should be assigned to only
one user at a time while the third one imposes that each sub-carrier must use
one integer modulation size. The decision variables are given by xk,n and yn,c,
respectively. We assume that Rk are random variables with joint probability
distribution H . Let us consider the case where H is concentrated in the fi-
nite number of points also called scenarios Rk = (rk,1, ..., rk,l, ..., rk,Lk

) with
probabilities pk,l such that

∑Lk

l=1
pk,l = 1, pk,l ≥ 0, ∀k.

Then, the problem (1)-(5) can be reformulated as follows [2]:

SQIP1: min{xk,n,yn,c}
∑K

k=1

∑N
n=1

∑M
c=1

P c
k,nxk,nyn,c (6)

st:
∑N

n=1
xk,n

[

∑M
c=1

c · yn,c

]

≥ rk,l ∀l ∈ Γk, ∀k (7)
∑

l∈Γk
pk,l ≥ 1 − αk ∀k (8)

∑K
k=1

xk,n ≤ 1 ∀n (9)
∑M

c=1
yn,c ≤ 1 ∀n (10)

xk,n, yn,c ∈ {0, 1} (11)

Constraints (8) mean that we have to choose a subset Γk of scenarios such
that the sum of the probabilities of this subset is greater than (1 − αk). For
this subset, the bit rate constraints will be active and valid, whereas for the
scenarios not in this subset, the constraints are not activated.

This problem can be reformulated by introducing the auxiliary binary variable
ϕk,l for each observation l = 1 : Lk, ∀k as follows:

ϕk,l =











0 if l ∈ Γk

1 otherwise
(12)

This yields the following problem:

SQIP2: min{xk,n,yn,c,ϕk,l}
∑K

k=1

∑N
n=1

∑M
c=1

P c
k,nxk,nyn,c (13)
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st:
∑N

n=1
xk,n

[

∑M
c=1

c · yn,c

]

≥ rk,l −Mϕk,l ∀k, l = 1 : Lk (14)
∑Lk

l=1
pk,lϕk,l ≤ αk ∀k (15)

∑K
k=1

xk,n ≤ 1 ∀n (16)
∑M

c=1
yn,c ≤ 1 ∀n (17)

xk,n, yn,c, ϕk,l ∈ {0, 1} (18)

where M is an arbitrary number such that

M ≥ max
k,l

{rk,l} + 1 (19)

This problem is a quadratic optimization problem with binary variables. This
quadratic problem is NP-hard, and so is its stochastic formulation. In this
case, we seek lower bounds using strong relaxations, namely SDP relaxations.

3 Semidefinite relaxation

In order to write a SDP relaxation for SQIP2, we define the (0-1) vector zT =
(x1,1, · · · , x1,N , · · · , xK,1, · · · , xK,N , y1,1, · · · , y1,M , · · · , yN,1, · · · , yN,M , ϕ1,1, · · · ,
ϕ1,L1

, · · · , ϕK,1, · · · , ϕK,Lk
). Then, let Z be a symmetric positive semidefinite

matrix defined as:

Z =







zzT z

zT 1





 � 0 (20)

We can construct symmetric matrices P for the objective function in (13), Uk,l

for constraints in (14) and Vk for constraints in (15). We propose the following
SDP relaxation for SQIP2:

SSDP2 : min
Z

Trace(PZ) (21)

st: Trace(Uk,lZ) ≥ rk,l ∀k, l = 1 : Lk (22)

Trace(VkZ) ≤ αk ∀k (23)

Trace([exn][exn]T Z) ≤ 1 ∀n (24)

Trace([eyn][eyn]T Z) ≤ 1 ∀n (25)

Trace(ζc
k,nZ) ≥ 0 ∀k, n, c (26)

diag(zzT ) = z (27)

Z � 0 (28)
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In this model, [exn] and [eyn] are coefficient vectors for constraints in (16) and
(17) according to vector z. Thus, the rank-1 matrices we construct with these
vectors are used to strength our SDP relaxation [3]. The symmetric matrices
ζc
k,n for all {k, n, c} are used to have positive values in matrix Z only in the

positions where {Pi,j , i < j} is positive, this is, in the entries of P where we
put the elements {P c

k,n, k, n, c} from (13). Finally, constraint (27) together with
constraint (28) form a relaxation constraint for the condition of zi ∈ {0, 1} for
all i. The last constraint also imposes the condition on matrix Z to be positive
semidefinite. Our SDP relaxation is tighter than the linear program (LP) we
obtain by applying Fortet linearization method [5] to SQIP2 as shown by our
preliminary results.

4 Conclusions

In this paper, we proposed a stochastic quadratic formulation for wireless
OFDMA networks. To this purpose, we considered an OFDMA quadratic
model [4] in which probabilistic constraints are added by using the approach
of [2]. Finally, a SDP relaxation is derived. Numerical results are given.

References

[1] Amzallag, D. Armarnik, T. Livschitz, M. Raz, D.,“Multi-Cell Slots Allocation in

OFDMA Systems,” Mobile and Wireless Communications Summit, 16th IST,
2007.

[2] Lisser A., Lopez R. and Hu Xu, “Stochastic Quadratic Knapsack with

Recourse,” International Network Optimization Conference, INOC-2009, April
2009.

[3] Helmberg, C.,“Semidefinite Programming for Combinatorial Optimization,”

ZIB-Report ZR-00-34, Konrad-Zuse-Zentrum Berlin, October 2000.

[4] Adasme Pablo, Lisser Abdel and Soto Ismael, “Robust Semidefinite Relaxations

for a New Quadratic OFDMA Resource Allocation Approach,” Working Paper
Number 1522, LRI, University of Paris Sud, France.

[5] Fortet R.,“Applications de l′algebre de boole en recherche operationelle,” Revue
Francaise de Recherche Operationelle, Vol. 4, pp. 17–26, 1960.

4


