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Abstract

Let G = (V,E) be a connected graph. The distance between two vertices u, v ∈ V ,
denoted by d(u, v), is the length of a shortest u−v path in G. The distance between
a vertex v ∈ V and a subset P ⊂ V is defined as min{d(v, x) : x ∈ P}, and it is
denoted by d(v, P ). An ordered partition {P1, P2, ..., Pt} of vertices of a graph G, is
a resolving partition of G, if all the distance vectors (d(v, P1), d(v, P2), ..., d(v, Pt))
are different. The partition dimension of G, denoted by pd(G), is the minimum
number of sets in any resolving partition of G. In this article we show that for all
pair of connected graphs G,H, pd(G × H) ≤ pd(G) + pd(H) and pd(G × H) ≤
pd(G) + dim(H). Consequently, we show that pd(G×H) ≤ dim(G) + dim(H) + 1.
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product.

1 Introduction

The concepts of resolvability and location in graphs were described indepen-
dently by Harary and Melter [9] and Slater [16], to define the same structure in
a graph. After these papers were published several authors developed diverse
theoretical works about this topic [2–8,14]. Also, Slater described the useful-
ness of these ideas into long range aids to navigation [16]. Recently, these
concepts were used by a pharmacy company while attempting to develop a
capability of large datasets of chemical graphs [12,13]. Other applications of
this concept to navigation of robots in networks and other areas appear in
[5,11,14]. Some variations on resolvability or location have been appearing in
the literature, like those about conditional resolvability [15], locating domina-
tion [10], resolving domination [1] and resolving partitions [4,7,8].
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Given a graph G = (V, E) and a set of vertices S = {v1, v2, ..., vk} of G,
the metric representation of a vertex v ∈ V with respect to S is the vector
r(v|S) = (d(v, v1), d(v, v2), ..., d(v, vk)), where d(v, vi), with 1 ≤ i ≤ k, de-
notes the distance between the vertices v and vi. We say that S is a resolving

set of G if for every pair of vertices u, v ∈ V , r(u|S) 6= r(v|S). The met-

ric dimension 1 of G is the minimum cardinality of any resolving set of G,
and it is denoted by dim(G). The metric dimension of graphs is studied in
[2–6,17]. Given an ordered partition Π = {P1, P2, ..., Pt} of the vertices of G,
the partition representation of a vertex v ∈ V with respect to the partition
Π is the vector r(v|Π) = (d(v, P1), d(v, P2), ..., d(v, Pt)), where d(v, Pi), with
1 ≤ i ≤ t, represents the distance between the vertex v and the set Pi, that
is d(v, Pi) = minu∈Pi

{d(v, u)}. We say that Π is a resolving partition of G if
for every pair of vertices u, v ∈ V , r(u|Π) 6= r(v|Π). The partition dimension

of G is the minimum number of sets in any resolving partition of G and it is
denoted by pd(G). The partition dimension of graphs is studied in [4,7,8,17].
It is natural to think that the partition dimension and metric dimension are
related; in [7] it was shown that for any nontrivial connected graph G we have

pd(G) ≤ dim(G) + 1. (1)

The study of relationships between invariants of Cartesian product graphs and
invariants of its factors appears frequently in research about graph theory. In
the case of resolvability, the relationships between the metric dimension of
the Cartesian product graphs and the metric dimension of its factors was
studied in [2,3]. An open problem on the dimension of Cartesian product
graphs is to prove (or finding a counterexample) that for all pair of graphs
G, H ; dim(G×H) ≤ dim(G)+dim(H). In the present paper we study the case
of resolving partition in Cartesian product graphs, by giving some relationships
between the partition dimension of Cartesian product graphs and the partition
dimension of its factors. More precisely, we show that for all pair of connected
graphs G, H ; pd(G×H) ≤ pd(G)+pd(H) and pd(G×H) ≤ pd(G)+dim(H).
Consequently, we show that pd(G × H) ≤ dim(G) + dim(H) + 1.

2 Results

Theorem 1 For any connected graphs G1 and G2,

pd(G1 × G2) ≤ pd(G1) + pd(G2).

By (1) we obtain the following direct consequence of Theorem 1.

Corollary 2 For any connected graphs G1 and G2,

pd(G1 × G2) ≤ pd(G1) + dim(G2) + 1.

As we can see below, the above relationship can be improved.

1 Also called locating number.
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Theorem 3 For any connected graphs G1 and G2,

pd(G1 × G2) ≤ pd(G1) + dim(G2).

We note that there are graphs for which Theorem 1 estimates pd(G1 × G2)
better than Theorem 3 and vice versa. For example Theorem 1 leads to
pd(Kn × Pn) ≤ n + 2 while Theorem 3 gives pd(Kn × Pn) ≤ n + 1. On the
contrary, if G denotes the graph in Figure 1, Theorem 1 leads to pd(G×G) ≤ 8
while Theorem 3 gives pd(G × G) ≤ 13.

Fig. 1. {{1, 4, 8, 12}, {2, 5, 9, 13}, {3, 6, 10, 14}, {7, 11, 15}} is a resolving partition of
G and {4, 5, 6, 8, 9, 10, 12, 13, 14} is a resolving set of G.

As a direct consequence of above theorem and (1) we deduce the following
interesting result.

Corollary 4 For any connected graphs G1 and G2,

pd(G1 × G2) ≤ dim(G1) + dim(G2) + 1.

One example of graphs for which the equality holds in Corollary 4 (and also
in Corollary 5 (ii)) are the graphs belonging to the family of grid graphs:
pd(Pr × Pt) = 3.

Corollary 5 For any connected graph G,

(i) pd(G × Kn) ≤ pd(G) + n − 1.
(ii) pd(G × Pn) ≤ pd(G) + 1.
(iii) pd(G × Cn) ≤ pd(G) + 2.
(iv) pd(G × K1,n) ≤ pd(G) + n − 1.
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