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1 Introduction

Radio labeling is derived from the assignment of radio frequencies (channels)
to a set of transmitters. The frequencies assigned depend on the geographical
distance between the transmitters: the closer two transmitters are, the greater
the potential for interference between their signals. Thus when the distance
between two transmitters is small, the difference in the frequencies assigned
must be relatively large, whereas two transmitters at a large distance may be
assigned frequencies with a small difference.

The use of graphs to model the “channel assignment” problem was first pro-
posed by Hale in 1980 [5]. Several schemes for distance labeling were subse-
quently introduced and have been extensively studied; Chartrand et al intro-
duced the variation known as radio labeling in 2001 [2].

In the graph model of the channel assignment problem, the vertices correspond
to the transmitters, and graph distance plays the role of geographical distance.
We assume all graphs are connected and simple. The distance between two
vertices u and v of a graph G, d(u, v), is the length of a shortest path between
u and v. The diameter of G, diam(G), is the maximum distance, taken over
all pairs of vertices of G. A radio labeling of a graph G is then defined to be
a function c : V (G) → Z+ satisfying

d(u, v) + |c(u) − c(v)| ≥ 1 + diam(G) (1)

for all distinct pairs of vertices u, v ∈ V (G). The span of a radio labeling c is
the maximum integer assigned by c. The radio number of a graph G, rn(G),
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is the minumum span, taken over all radio labelings of G 1 .

As Liu and Zhu write, “It is surprising that determining the radio number
seems a difficult problem even for some basic families of graphs.” [9] The
radio number is known exactly for only a few graph families, including paths
and cycles [9] and the squares of paths [8] and cycles [7]; wheels and gears
[3], some generalized prisms [11], and Cartesian products of a cycle with itself
[10]. Meanwhile, bounds for the radio numbers of trees [6], ladders [4], and
square grids [1] have been identified, while the radio number of cubes of the
cycles C3

n for n ≤ 20 and n ≡ 0, 2, or 4 (mod 6) is known [12].

In this investigation we focus as follows:

Question: What may be said about the radio number of the Cartesian product
of two graphs?

The Cartesian product of two graphs G and H has vertex set V (G�H) =
V (G) × V (H) = {(g, h) | g ∈ V (G) and h ∈ V (H)}. The edges of G�H

consist of those pairs of vertices {(g, h), (g′, h′)} satisfying g = g′ and h is
adjacent to h′ in H or h = h′ and g is adjacent to g′ in G. We note the
following facts about Cartesian products:

• The order of a product is the product of the orders of the factor graphs,
i.e., G�H has |V (G)| · |V (H)| vertices.

• Distances in products are sums of distances between corresponding vertices
in factor graphs, i.e., dG�H ((g1, h1), (g2, h2)) = dG(g1, g2) + dH(h1, h2).

• In particular, the diameter of a product is the sum of the diameters of the
factors, i.e., diam(G�H) = diam(G) + diam(H).

In Section 2 we provide three lower bounds for the radio number of a Cartesian
product, each of which outperforms the others in specific cases. Two upper
bounds are provided in Section 3, along with some comments as to their effi-
cacy.

2 Lower Bounds

Our first bound follows directly from the fact that a radio labeling is an
injection. As such, the span of any radio labeling may never be less than the
number of vertices of the associated graph.

1 We use the convention, established in [2], that the co-domain of a radio labeling
is Z+ = {1, 2, . . .}. Some authors use {0, 1, 2, . . .} as the co-domain; radio num-
bers specified using the non-negative integers as co-domain are one less than those
determined using the positive integers.
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Theorem 1 (Vertex Lower Bound)

rn(G�H) ≥ |V (G)| · |V (H)|.

This lower bound is tight for the product of the Petersen graph with itself.

The second lower bound is stated in terms of the radio numbers of the factor
graphs.

Theorem 2 (Radio Number Lower Bound)Let G and H be graphs.

rn(G�H) ≥ rn(G) + rn(H) − 1.

This bound outperforms the Vertex Lower Bound on prism graphs, which are
products of 2-paths with n-cycles. These prism graphs have 2n vertices (so the
Vertex Lower Bound states the radio number is not less than 2n); the Radio
Lower Bound gives a lower bound that is O(n2).

To specify the third lower bound, an additional term, the “gap,” must be
introduced. Essentially, the gap of G is the smallest possible difference between
the ith and (i + 2)nd largest labels in a radio labeling of G.

Definition 3 Let c be a radio labeling of a graph G, and let {x1, x2, . . . , xn}
be the vertices of G, arranged so that c(xi) < c(xj) whenever i < j. Define
φ(G, c) to be the smallest integer satisfying φ(G, c) ≥ c(xi+2) − c(xi) for all
i ∈ {1, 2, . . . , n− 2}. Finally, define φ(G) to be the minimum of φ(G, c) taken
over all radio labelings c of G.

Our third lower bound is expressed in terms of this gap.

Theorem 4 (Gap Lower Bound)

rn(G�H) ≥
(⌊

1

2
|V (G)| · |V (H)|

⌋

− 1
)

(φ(G) + φ(H) − 2) + a,

where a = 1 when |V (G)| · |V (H)| is odd and a = 2 otherwise.

This lower bound is again sharp for the product of the Petersen graph with
itself. Moreover, it is significantly more effective than the Vertex and Radio
Lower Bounds on products of cycles with themselves and products of paths
with themselves. The Vertex and Radio Lower Bounds give lower bounds that
are O(n2) for each; the Gap Lower Bound gives O(n3) bounds. (We note that
the radio number of both families of products has been shown to be O(n3) [1],
[10].)
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3 Upper Bounds

In this section we turn our attention to determining upper bounds for radio
numbers of Cartesian products of graphs. The radio condition (1) depends on
distance and diameter; without knowledge of specific distances between pairs
of vertices in the product graph, it is unreasonable to expect upper bounds to
be sharp. Nonetheless, we present two upper bounds with varied hypotheses.

Theorem 5 Let G be a graph with diameter 2 and rn(G) = |V (G)| = n.
Then

rn(G�G) ≤ n2 + 2(2n − 2) +
(

2
⌊

n

2

⌋

− 1
) ⌊

n − 1

2

⌋

.

The statement of the next theorem is similar in spirit.

Theorem 6 Assume G and H are graphs satisfying rn(G) = |V (G)| = n,
rn(H) = |V (H)| = m, and diam(G) − diam(H) ≥ 2. Then

rn(G�H) ≤ diam(G)(n + m − 2) + 2mn − 2m − 4n + a,

where a = 7 when m and n have opposite parity, a = 8 when both m and n

are odd, and a = 6 when both m and n are even.

To establish both of these theorems, one must replace the radio condition (1)
with conditions sufficient for labelings of the products to be radio labelings.
As nothing is assumed regarding distances between vertices, the bounds nec-
essarily involve products of the diameters of the factor graphs. It would be of
interest to investigate additional upper bounds resulting from removing the
hypotheses that the factor graphs have the smallest possible radio numbers,
or by including additional hypotheses regarding structure of the factor graphs.
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