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1 Introduction

An interconnection network should be fault tolerant, because practical com-
munication networks are exposed to failures of network components. Both
failures of nodes and failures of connections between them happen and it is
desirable that a network is robust in the sense that a limited number of fail-
ures does not break down the whole system. A lot of work has been done
on various aspects of network fault tolerance, see for example the survey [6]
and more recent papers [9,12,14]. In particular the fault diameter with faulty
vertices which was first studied in [10] and the edge fault diameter has been
determined for many important networks recently [1–4,7,8,11,13]. Usually ei-
ther only edge faults or only vertex faults are considered, while the case when
both edges and vertices may be faulty is studied rarely. In recent work on
fault diameter of Cartesian graph products and bundles [1–4], analogous re-
sults were found for both fault diameter and edge fault diameter. However,
the proofs for vertex and edge faults are independent, and our effort to see
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how results in one case may imply the others was not successful. A natural
question is whether it is possible to design a uniform theory that would enable
unified proofs or provide tools to translate results for one type of faults to the
other. It is therefore of interest to study general relationships between invari-
ants under simultaneous vertex and edge faults. Some basic results on edge,
vertex and mixed fault diameters for general graphs appear in [5]. In order to
study the fault diameters of graph products and bundles under mixed faults,
it is important to understand the generalized connectivities. We define mixed
connectivity which generalizes both vertex and edge connectivity, and observe
some basic facts for any connected graph. Furthermore, we generalize results
of vertex connectivity and edge connectivity of Cartesian graph bundles [1,4].
As a corollary, mixed connectivity of the Cartesian product of finite number
of factors is given. In particular Theorem 3.2 improves the result on edge
connectivity of Cartesian graph products and bundles.

2 Mixed connectivity

Definition 2.1 Let G be any connected graph. A graph G is (p, q)+connected,

if G remains connected after removal of any p vertices and any q edges.

Any connected graph G is (0, 0)+connected, (p, 0)+connected for any p <

κ(G) and (0, q)+connected for any q < λ(G), where κ(G) and λ(G) are the
usual vertex- and edge-connectivities. In our notation (i, 0)+connected is the
same as (i + 1)-connected, i.e. the graph remains connected after removal of
any i vertices. Similarly, (0, j)+connected is the same as (j + 1)-edge con-
nected, i.e. the graph remains connected after removal of any j edges. Clearly,
if G is (p, q)+connected graph, then G is (p′, q′)+connected for any p′ ≤ p

and any q′ ≤ q. Furthermore, for any connected graph G with k < κ(G)
faulty vertices, at least k edges are not in functional. Roughly speaking, graph
G remains connected if any faulty vertex in G is replaced with any edge.
It is easy to prove that if a graph G is (p, q)+connected and p > 0, then
G is (p − 1, q + 1)+connected. Hence for p > 0 we have a chain of impli-
cations: (p, q)+connected =⇒ (p − 1, q + 1)+connected =⇒ . . . =⇒ (1, p −
1 + q)+connected =⇒ (0, p + q)+connected, that generalizes the well-known
proposition that any k-connected graph is also k-edge connected. Therefore,
a graph G is (p, q)+connected if and only if p < κ(G) and p + q < λ(G).

If for a graph G κ(G) = λ(G) = k, then G is (i, j)+connected exactly
when i + j < k. However, if 2 ≤ κ(G) < λ(G), the question whether G is
(i, j)+connected for 1 ≤ i < κ(G) ≤ i + j < λ(G) is not trivial. The example
below shows that in general knowing κ(G) and λ(G) is not enough to decide
whether G is (i, j)+connected.
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Example 2.2 For graphs on Fig. 1 we have κ(G1) = κ(G2) = 2 and λ(G1) =
λ(G2) = 3. Both graphs are (1, 0)+connected =⇒ (0, 1)+connected, and (0, 2)+
connected. Graph G1 is not (1, 1)+connected, while graph G2 is.

Fig. 1. Graphs G1 and G2 from Example 2.2.

Both edge connectivity and vertex connectivity of a graph can be computed
in polyonimal time. Therefore it is interesting to ask

Problem. Let G be a graph and 1 ≤ i < κ(G) ≤ i + j < λ(G). Is there a
polynomial algorithm to decide whether G is (i, j)+connected?

3 Mixed connectivity of Cartesian graph products and bundles

Graph products and bundles are among frequently studied interconnection
network topologies. For example the meshes, tori, hypercubes and some of
their generalizations are Cartesian products. It is less known that some well-
known topologies are Cartesian graph bundles, i.e. some twisted hypercubes
and multiplicative circulant graphs. Graph bundles also appear as computer
topologies. A well known example is the twisted torus, a Cartesian graph
bundle with fibre C4 over base C4 is the ILLIAC IV architecture, a famous
supercomputer that inspired some modern multicomputer architectures. It
may be interesting to note that the original design was a graph bundle with
fibre C8 over base C8, but due to high cost a smaller version was build. A
Cartesian graph bundle is a generalization of graph cover and the Cartesian
graph product.

Definition 3.1 Let B and F be graphs. A graph G is a Cartesian graph
bundle with fibre F over the base graph B if there is a graph map p : G → B

such that for each vertex v ∈ V (B), p−1({v}) is isomorphic to F , and for each

edge e = uv ∈ E(B), p−1({e}) is isomorphic to F2K2.

We have generalized the result [1] on (vertex) connectivity and improved the
result [4] on edge connectivity:

Theorem 3.2 Let G be a Cartesian graph bundle with fibre F over the base

graph B, graph F be (pF , qF )+connected and graph B be (pB, qB)+connected.

Then Cartesian graph bundle G is (pF + pB + 1, qF + qB)+connected.

As the Cartesian product is a Cartesian graph bundle where all the isomor-
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phisms between the fibres are identities, the statement about mixed connec-
tivity of Cartesian graph products of a finite number of factors follows easily
from Theorem 3.2.

Corollary 3.3 Let graphs Gi, i = 1, . . . , k, be (pi, qi)+connected. Then the

Cartesian graph product G = G12G22 . . .2Gk is (
∑

pi+k−1,
∑

qi)+connected.
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