Pixel Guards in Polyominoes

Val Pinciu
Department of Mathematics, Southern Connecticut State University, New Haven, CT 06515

Key words: art gallery problem, pixel, polyomino

1 Introduction

The original art gallery problem, posed by Klee in 1973, asks to find the minimum number of guards sufficient to cover any polygon with n vertices. The first solution to this problem was given by Chvátal [1], who proved that $\lfloor n / 3\rfloor$ guards are sometimes necessary, and always sufficient to cover a polygon with n vertices. Later Fisk [2] provided a shorter proof of Chvátal's theorem using an elegant graph coloring argument. Klee's art gallery problem has since grown into a significant area of study. Numerous art gallery problems have been proposed and studied with different restrictions placed on the shape of the galleries or the powers of the guards. (See the monograph by O'Rourke [4], and the surveys by Shermer [5] and Urrutia [6].)

In this paper we consider a variation of the art gallery problem where the gallery is an m-polyomino, consisting of a connected union of $m 1 \times 1$ unit squares called pixels. Throughout this paper P_{m} denotes an m-polyomino. We say that a point $a \in P_{m}$ covers a point $b \in P_{m}$ provided $a=b$, or the line segment $a b$ does not intersect the exterior of P_{m}. We say that a pixel A covers a point b, provided some point $a \in A$ covers b. A set of points G is called a point guard set for P_{m} if for every point $b \in P_{m}$ there is point $a \in G$ such that a covers b. A set of pixels \mathcal{G} is called a pixel guard set for P_{m} if for every point $b \in P_{m}$ there is a pixel $A \in \mathcal{G}$ such that A covers b.

In [3], Irfan et al. show that $\left\lceil\frac{m-1}{3}\right\rceil$ point guards are sufficient and sometimes necessary to cover any m-polyomino P_{m}, with $m \geq 2$. They also note that $\left\lceil\frac{m-1}{3}\right\rceil$ is an upper bound for the minimum number of pixel guards sufficient to cover any m-polyomino. In this paper we improve this bound, showing that an m-polyomino always has a pixel guard set of cardinality $\left\lfloor\frac{m+1}{11}\right\rfloor+\left\lfloor\frac{m+5}{11}\right\rfloor+\left\lfloor\frac{m+9}{11}\right\rfloor$. We also show that this bound is sharp, by constructing m-polyominoes that require exactly $\left\lfloor\frac{m+1}{11}\right\rfloor+\left\lfloor\frac{m+5}{11}\right\rfloor+\left\lfloor\frac{m+9}{11}\right\rfloor$ pixel guards.

2 Main Results

Here is our main result:
Theorem 1 For any m-polyomino P_{m} with $m \geq 2,\left\lfloor\frac{m+1}{11}\right\rfloor+\left\lfloor\frac{m+5}{11}\right\rfloor+\left\lfloor\frac{m+9}{11}\right\rfloor$ pixel guards are always sufficient, and sometimes necessary to cover P_{m}.

Proof. We will use a construction to prove the necessity part of our result. The polyomino $P_{11 k+2}$ from Figure 1 has $3+7 k+4(k-1)+3=11 k+2$ pixels. The dual graph of this polyomino is a tree with $1+2 k+(k-1)+1=3 k+1$ leaves. Since two pixels that correspond to a leaf cannot be guarded by the same pixel guard, then the number of pixels required to guard $P_{11 k+2}$ is at least $3 k+1$. Simple alterations of this construction can provide examples of m-polyominos that require at least $\left\lfloor\frac{m+1}{11}\right\rfloor+\left\lfloor\frac{m+5}{11}\right\rfloor+\left\lfloor\frac{m+9}{11}\right\rfloor$ pixel guards, for any integer $m \geq 2$. Next we will prove several technical lemmas, and the sufficiency will follow from Proposition 2.

Fig. 1. An $(11 k+2)$-polyomino that requires $3 k+1$ pixel guards.
Lemma 1 For each positive integer m we define

$$
f(m)=\left\lfloor\frac{m+1}{11}\right\rfloor+\left\lfloor\frac{m+5}{11}\right\rfloor+\left\lfloor\frac{m+9}{11}\right\rfloor
$$

Then the following are true:
(1) $f(m+3) \leq f(m)+1 \leq f(m+4)$ for all positive integers m.
(2) $f(m+7) \leq f(m)+2 \leq f(m+8)$ for all positive integers m.
(3) $f(m+11)=f(m)+3$ for all positive integers m.
(4) $f(m+n-2) \geq f(m)+f(n)-1$ for all positive integers m and n.

Lemma 2 For any m-polyomino P_{m} with $m \geq 13$, there exists a $k, 4 \leq k \leq$ 10 such that P_{m} is the union of a k-polyomino P_{k} and an $(m-k)$-polyomino P_{m-k}. Moreover, if the smallest k that satisfies this property is $k=10$, then we can assume that exactly one pixel of P_{m-10} is adjacent to P_{10}.

Proof. Given an m-polyomino P_{m}, let G_{m}^{*} be the dual graph of P_{m}, and let T_{m} be a spanning tree of G_{m}^{*}. Since every vertex of G_{m}^{*} has maximum degree

4, we can look at T_{m} as a rooted trinary tree. For simplicity, we will label the vertices of the rooted tree as the corresponding pixels in the dual polyomino. We will also transfer the common terminology from rooted trees (child, parent, sibling, etc) to the corresponding pixels. For any vertex A of T_{m} that is not the root, we can obtain a spanning forest of G_{m}^{*} with two components, by deleting the edge that connects A with its parent. These two componenets will generate a decomposition of P_{m} into two polyominoes: a k-polyomino P_{k} that contains A, called the polyomino generated by A and T_{m}, and another polyomino P_{m-k} that does not contain A. If B is a pixel of P_{m-k} and C is a pixel of P_{k} such that B and C are adjacent, we can create another spanning tree T_{m}^{\prime} of G_{m}^{*} by replacing the edge that connects C with its parent in T_{m} with the edge $B C$. We will call this an adoption and say that B adopted C. An adoption will transfer a pixel of the polyomino generated by A, and all its descendants to the complementary polyomino. Now if h is the height of T_{m}, we consider the pixels of level $h-1, h-2, h-3$, or $h-4$ that have at least three descendants. Obviously this set is not empty. Let A be such a pixel with a minimum number of descendants. Then one can show that the polyomino generated by A satisfies the conditions of the proposition, or we can do an adoption to decrease the number of descendants of A.

Lemma 3 (1) One pixel guard is always sufficient to cover any 5-polyomino.
(2) Two pixel guards are always sufficient to cover any 9-polyomino.
(3) Three pixel guards are always sufficient to cover any 12-polyomino.

Proposition 2 For any m-polyomino P_{m}, if $m \geq 2$, then $\left\lfloor\frac{m+1}{11}\right\rfloor+\left\lfloor\frac{m+5}{11}\right\rfloor+$ $\left\lfloor\frac{m+9}{11}\right\rfloor$ pixel guards are sufficient to cover P_{m}.

Proof. The proof of this proposition is by induction on m. If $2 \leq m \leq 12$, the statement follows from Lemma 3. If $m \geq 13$, then by Lemma 2, P_{m} is the union of a k-polyomino P_{k} and an $(m-k)$-polyomino P_{m-k}, where $4 \leq k \leq 10$. Assume k is the smallest with this property. Let $f(m)$ be the function from Lemma 1. Then by induction hypothesis the minimum number of pixel guards required to watch P_{m-k} is $g\left(P_{m-k}\right) \leq f(m-k)$.
If $k=4$ or $k=5$, we obtain:
$g\left(P_{m}\right) \leq g\left(P_{k}\right)+g\left(P_{m-k}\right) \leq 1+g\left(P_{m-k}\right) \leq 1+f(m-4) \leq f(m)$.
If $k=8$ or $k=9$, we obtain:
$g\left(P_{m}\right) \leq g\left(P_{k}\right)+g\left(P_{m-k}\right) \leq 2+g\left(P_{m-k}\right) \leq 2+f(m-8) \leq f(m)$.
If $k=6$, we should note that 33 out of the 35 possible hexaminoes can be covered by only one pixel guard, and we can use an argument similar with the case $k=4$ or $k=5$. Otherwise, if P_{k} requires two pixel guards, let A be the pixel that generated P_{k}, and let B be the parent of A. If B is the only pixel in P_{m-k} adjacent to P_{k}, then one can show that P_{m-k} has a pixel guard set of cardinality $f(m-4)$ that contains B. Then B can also be used to guard part of P_{k}, and we need only one additional guard. Otherwise, let C be a pixel
in P_{m-k} adjacent to P_{k}. Then C can adopt a descendant of A, reducing the problem to the case $k=4$ or $k=5$, or C is a leaf, in which case we can remove B and C from P_{m-k}, add them to P_{k}, and reduce the problem to the case $k=8$. (note that the minimality of k was not used in the case $k=8$.) If $k=7$, let A be the pixel that generated P_{k}, and let B be its parent. Then this case can also be reduced to the one of the cases $k=4, k=5$, or $k=8$, or we can show that B has exactly two children. In this last case, let C be the other child of B, and let D be the parent of B. If in T_{m} we remove the edge $B C$, and the edge that connects D with its parent, we can obtain a decomposition of P_{m} into three polyominos. One of them is 9-polyomino. Using the induction hypothesis and Lemma 1 we obtain:
$g\left(P_{m}\right) \leq g\left(P_{9}\right)+g\left(P_{l}\right)+g\left(P_{m-l-9}\right) \leq 2+f(l)+f(m-l-9)$
$\leq 2+f(l+m-l-9-2)+1=3+f(m-11)=f(m)$.
Finally, if $k=10$, since k is the smallest that satisfies the property from Lemma 2, we can assume that exactly one pixel of P_{m-10} is adjacent to P_{10}. Then by removing this pixel from P_{m-10}, and adding it to P_{10}, we can assume that P_{m} is the union of an 11-polyomino P_{11} and an $(m-11)$-polyomino P_{m-11}. Then $g\left(P_{m}\right) \leq g\left(P_{11}\right)+g\left(P_{m-11}\right) \leq 3+g\left(P_{m-11}\right) \leq 3+f(m-11)=f(m)$.

References

[1] V. Chvátal, A combinatorial theorem in plane geometry: J. Combin. Theory Ser. B 18 (1975) 39-41.
[2] S. Fisk, A short proof of Chvátal's watchman theorem: J. Combin. Theory Ser. B 24 (1978) 374.
[3] M. Irfan, J. Iwerks, J. Kim, J. Mitchell, Guarding Polyominoes: 19th Annual Workshop on Computational Geometry (2009).
[4] J. O'Rourke: Art Gallery Theorems. Oxford University Press, 1987.
[5] T.C. Shermer: Recent results in art gallery theorems, Proc. IEEE 80 (1992) 1384-1399.
[6] J. Urrutia: Art gallery and illumination problems, in: Handbook of Computational Geometry, J.-R Sack and J. Urrutia (Eds.), Elsevier Science B. V., 1999, pp. 973-1027.

