
Pixel Guards in Polyominoes

Val Pinciu

Department of Mathematics, Southern Connecticut State University, New Haven,

CT 06515

Key words: art gallery problem, pixel, polyomino

1 Introduction

The original art gallery problem, posed by Klee in 1973, asks to find the min-
imum number of guards sufficient to cover any polygon with n vertices. The
first solution to this problem was given by Chvátal [1], who proved that ⌊n/3⌋
guards are sometimes necessary, and always sufficient to cover a polygon with
n vertices. Later Fisk [2] provided a shorter proof of Chvátal’s theorem us-
ing an elegant graph coloring argument. Klee’s art gallery problem has since
grown into a significant area of study. Numerous art gallery problems have
been proposed and studied with different restrictions placed on the shape of
the galleries or the powers of the guards. (See the monograph by O’Rourke
[4], and the surveys by Shermer [5] and Urrutia [6].)

In this paper we consider a variation of the art gallery problem where the
gallery is an m-polyomino, consisting of a connected union of m 1 × 1 unit
squares called pixels. Throughout this paper Pm denotes an m-polyomino. We
say that a point a ∈ Pm covers a point b ∈ Pm provided a = b, or the line
segment ab does not intersect the exterior of Pm. We say that a pixel A covers
a point b, provided some point a ∈ A covers b. A set of points G is called a
point guard set for Pm if for every point b ∈ Pm there is point a ∈ G such that
a covers b. A set of pixels G is called a pixel guard set for Pm if for every point
b ∈ Pm there is a pixel A ∈ G such that A covers b.

In [3], Irfan et al. show that ⌈m−1

3
⌉ point guards are sufficient and sometimes

necessary to cover any m-polyomino Pm, with m ≥ 2. They also note that
⌈m−1

3
⌉ is an upper bound for the minimum number of pixel guards sufficient to

cover any m-polyomino. In this paper we improve this bound, showing that an
m-polyomino always has a pixel guard set of cardinality ⌊m+1

11
⌋+⌊m+5

11
⌋+⌊m+9

11
⌋.

We also show that this bound is sharp, by constructing m-polyominoes that
require exactly ⌊m+1

11
⌋ + ⌊m+5

11
⌋ + ⌊m+9

11
⌋ pixel guards.
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2 Main Results

Here is our main result:

Theorem 1 For any m-polyomino Pm with m ≥ 2, ⌊m+1

11
⌋ + ⌊m+5

11
⌋ + ⌊m+9

11
⌋

pixel guards are always sufficient, and sometimes necessary to cover Pm.

Proof. We will use a construction to prove the necessity part of our result.
The polyomino P11k+2 from Figure 1 has 3+7k+4(k−1)+3 = 11k+2 pixels.
The dual graph of this polyomino is a tree with 1 + 2k + (k − 1) + 1 = 3k + 1
leaves. Since two pixels that correspond to a leaf cannot be guarded by the
same pixel guard, then the number of pixels required to guard P11k+2 is at
least 3k + 1. Simple alterations of this construction can provide examples of
m-polyominos that require at least ⌊m+1

11
⌋ + ⌊m+5

11
⌋ + ⌊m+9

11
⌋ pixel guards, for

any integer m ≥ 2. Next we will prove several technical lemmas, and the
sufficiency will follow from Proposition 2. �

Fig. 1. An (11k + 2)-polyomino that requires 3k + 1 pixel guards.

Lemma 1 For each positive integer m we define

f(m) =
⌊

m + 1

11

⌋

+
⌊

m + 5

11

⌋

+
⌊

m + 9

11

⌋

Then the following are true:

(1) f(m + 3) ≤ f(m) + 1 ≤ f(m + 4) for all positive integers m.
(2) f(m + 7) ≤ f(m) + 2 ≤ f(m + 8) for all positive integers m.
(3) f(m + 11) = f(m) + 3 for all positive integers m.
(4) f(m + n − 2) ≥ f(m) + f(n) − 1 for all positive integers m and n.

Lemma 2 For any m-polyomino Pm with m ≥ 13, there exists a k, 4 ≤ k ≤
10 such that Pm is the union of a k-polyomino Pk and an (m − k)-polyomino
Pm−k. Moreover, if the smallest k that satisfies this property is k = 10, then
we can assume that exactly one pixel of Pm−10 is adjacent to P10.

Proof. Given an m-polyomino Pm, let G∗

m
be the dual graph of Pm, and let

Tm be a spanning tree of G∗

m
. Since every vertex of G∗

m
has maximum degree
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4, we can look at Tm as a rooted trinary tree. For simplicity, we will label the
vertices of the rooted tree as the corresponding pixels in the dual polyomino.
We will also transfer the common terminology from rooted trees (child, parent,
sibling, etc) to the corresponding pixels. For any vertex A of Tm that is not
the root, we can obtain a spanning forest of G∗

m
with two components, by

deleting the edge that connects A with its parent. These two componenets
will generate a decomposition of Pm into two polyominoes: a k-polyomino Pk

that contains A, called the polyomino generated by A and Tm, and another
polyomino Pm−k that does not contain A. If B is a pixel of Pm−k and C is a
pixel of Pk such that B and C are adjacent, we can create another spanning
tree T ′

m
of G∗

m
by replacing the edge that connects C with its parent in Tm

with the edge BC. We will call this an adoption and say that B adopted C.
An adoption will transfer a pixel of the polyomino generated by A, and all its
descendants to the complementary polyomino. Now if h is the height of Tm,
we consider the pixels of level h − 1, h − 2, h − 3, or h − 4 that have at least
three descendants. Obviously this set is not empty. Let A be such a pixel with
a minimum number of descendants. Then one can show that the polyomino
generated by A satisfies the conditions of the proposition, or we can do an
adoption to decrease the number of descendants of A. �

Lemma 3 (1) One pixel guard is always sufficient to cover any 5-polyomino.
(2) Two pixel guards are always sufficient to cover any 9-polyomino.
(3) Three pixel guards are always sufficient to cover any 12-polyomino.

Proposition 2 For any m-polyomino Pm, if m ≥ 2, then ⌊m+1

11
⌋ + ⌊m+5

11
⌋ +

⌊m+9

11
⌋ pixel guards are sufficient to cover Pm.

Proof. The proof of this proposition is by induction on m. If 2 ≤ m ≤ 12,
the statement follows from Lemma 3. If m ≥ 13, then by Lemma 2, Pm is the
union of a k-polyomino Pk and an (m−k)-polyomino Pm−k, where 4 ≤ k ≤ 10.
Assume k is the smallest with this property. Let f(m) be the function from
Lemma 1. Then by induction hypothesis the minimum number of pixel guards
required to watch Pm−k is g(Pm−k) ≤ f(m − k).
If k = 4 or k = 5, we obtain:
g(Pm) ≤ g(Pk) + g(Pm−k) ≤ 1 + g(Pm−k) ≤ 1 + f(m − 4) ≤ f(m).
If k = 8 or k = 9, we obtain:
g(Pm) ≤ g(Pk) + g(Pm−k) ≤ 2 + g(Pm−k) ≤ 2 + f(m − 8) ≤ f(m).

If k = 6, we should note that 33 out of the 35 possible hexaminoes can be
covered by only one pixel guard, and we can use an argument similar with the
case k = 4 or k = 5. Otherwise, if Pk requires two pixel guards, let A be the
pixel that generated Pk, and let B be the parent of A. If B is the only pixel
in Pm−k adjacent to Pk, then one can show that Pm−k has a pixel guard set
of cardinality f(m − 4) that contains B. Then B can also be used to guard
part of Pk, and we need only one additional guard. Otherwise, let C be a pixel
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in Pm−k adjacent to Pk. Then C can adopt a descendant of A, reducing the
problem to the case k = 4 or k = 5, or C is a leaf, in which case we can
remove B and C from Pm−k, add them to Pk, and reduce the problem to the
case k = 8. (note that the minimality of k was not used in the case k = 8.)
If k = 7, let A be the pixel that generated Pk, and let B be its parent. Then
this case can also be reduced to the one of the cases k = 4, k = 5, or k = 8,
or we can show that B has exactly two children. In this last case, let C be the
other child of B, and let D be the parent of B. If in Tm we remove the edge
BC, and the edge that connects D with its parent, we can obtain a decom-
position of Pm into three polyominos. One of them is 9-polyomino. Using the
induction hypothesis and Lemma 1 we obtain:
g(Pm) ≤ g(P9) + g(Pl) + g(Pm−l−9) ≤ 2 + f(l) + f(m − l − 9)
≤ 2 + f(l + m − l − 9 − 2) + 1 = 3 + f(m − 11) = f(m).
Finally, if k = 10, since k is the smallest that satisfies the property from
Lemma 2, we can assume that exactly one pixel of Pm−10 is adjacent to P10.
Then by removing this pixel from Pm−10, and adding it to P10, we can assume
that Pm is the union of an 11-polyomino P11 and an (m−11)-polyomino Pm−11.
Then g(Pm) ≤ g(P11)+g(Pm−11) ≤ 3+g(Pm−11) ≤ 3+f(m−11) = f(m). �
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