Maximum Δ-edge-colorable subgraphs of class II graphs

Vahan V. Mkrtchyan, ${ }^{\text {a, }}$ Eckhard Steffen ${ }^{\text {a }}$
${ }^{\text {a }}$ Paderborn Institute for Advanced Studies in Computer Science and Engineering, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany

Key words: maximum Δ-edge-colorable subgraph, matching, 2 -factor, edge-chromatic number, chromatic index, class II graph

1 Introduction

We consider finite, undirected graphs $G=(V, E)$ with vertex set V and edge set E. The graphs might have multiple edges but no loops. Let $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degree of a graph G, respectively. A partial proper t-edge-coloring of a graph G is an assignment of colors $\{1, \ldots, t\}$ to some edges of G such that adjacent edges receive different colors. If θ is a partial proper t-edge-coloring of a graph G and P is a path, then P is called to be $\alpha-\beta$ alternating, if the edges of P are colored by the colors α or β. A partial proper t-edge-coloring of a graph G is called a proper t-edge-coloring (or just t-edge-coloring) of G if all edges are assigned some color. The least number t for which G has a t-edge-coloring is called the chromatic index of G and is denoted by $\chi^{\prime}(G)$. The classical theorems of Shannon and Vizing state:

Theorem 1 (Shannon) For any graph $G: \Delta(G) \leq \chi^{\prime}(G) \leq\left\lfloor\frac{3 \Delta(G)}{2}\right\rfloor$.
Theorem 2 (Vizing) For any graph $G: \Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+\mu(G)$, where $\mu(G)$ is the maximum multiplicity of an edge in G.

A graph G with $\chi^{\prime}(G)=\Delta(G)=\Delta$ is class I, otherwise it is class II. There are long standing open conjectures on the class II graphs, cf. [9]. It is a notorious difficult open problem to characterize class II graphs or even to obtain some insight into their structural properties. This paper focuses on the Δ-colorable

[^0]part of graphs. A subgraph H of G is called maximum Δ-edge-colorable, if it is Δ-edge-colorable and contains as many edges as possible. The fraction $|E(H)| /|E(G)|$ is subject of many papers, and e.g. lower bounds are proved for cubic, subcubic or 4-regular graphs, $[1,3,5]$. The aim of this paper is to prove a general best possible lower bound for all graphs.

Let H be a maximum Δ-edge-colorable subgraph of G, which is properly colored with $\{1, \ldots, \Delta\}$. Usually, we will refer to edges of $E(G) \backslash E(H)$ as uncolored edges. For a vertex v of G let $C(v)$ be the set of colors that appear at v, and $\bar{C}(v)=\{1, \ldots, \Delta\} \backslash C(v)$ be the set of colors which are missing at v. Let $e=(v, u) \in E(G) \backslash E(H)$ be an uncolored edge, and $\alpha \in \bar{C}(u), \beta \in \bar{C}(v)$. Since H is a maximum Δ-edge-colorable subgraph of G, we have that $\alpha \in C(v)$ and $\beta \in C(u)$. Consider the $\alpha-\beta$ alternating path P starting from the vertex v. Again, since H is a maximum Δ-edge-colorable subgraph of G, the path P ends in u. Thus P is an even path, which together with the edge e forms an odd cycle. We will denote this cycle by $C_{\alpha, \beta, H}^{e}$. If the subgraph H is fixed, then we will shorten the notation to $C_{\alpha, \beta}^{e}$.

The cycles corresponding to uncolored edges, that are the cycles $C_{\alpha, \beta}^{e}$, play a central role in $[6,8]$ in the study of cubic graphs. One aim of the present paper is to generalize some of these results to arbitrary graphs, and to investigate the maximum Δ-edge-colorable subgraphs. We show that any set of vertex disjoint cycles of a graph G with $\Delta(G) \geq 3$ can be extended to a maximum Δ-edge-colorable subgraph of G. In particular, any 2 -factor of a graph with maximum degree at least three can be extended to such a subgraph.

For a graph G let $r_{e}(G)$ denote the minimum number of edges that should be removed from G in order to obtain a graph H with $\chi^{\prime}(H)=\Delta(G)$. Let G be a graph and ϕ a $\chi^{\prime}(G)$-coloring of G with $\chi^{\prime}(G)=\Delta(G)+k(k \geq 1)$. Let $r_{\phi}^{\prime}(G)=\min \sum_{j=1}^{k}\left|\phi^{-1}\left(i_{j}\right)\right|$, and define $r_{e}^{\prime}(G)=\min _{\phi} r_{\phi}^{\prime}(G)$ as the minimum size of the union of k color-classes in a $\chi^{\prime}(G)$-edge-coloring of G.

Clearly, $r_{e}(G)=|E(G)|-|E(H)|$, where H is a maximum Δ-edge-colorable subgraph of G. In [4] it is shown that the complement of any maximum 3-edge-colorable subgraph of a cubic graph is a matching, and hence $r_{e}(G)=$ $r_{e}^{\prime}(G)$ for cubic graphs. This paper generalizes this result to simple graphs. We further prove some bounds for the vertex degrees of a maximum $\Delta(G)$ colorable subgraph H.

2 The main results

The key property of cycles corresponding to uncolored edges that is used in $[6,8]$ is their vertex-disjointness. There are many examples showing that they
can have even common edges in the general case. Despite this, it turns out that, as Theorem 3 demonstrates below, the edge-disjointness of the cycles can be preserved.

Theorem 3 Let H be any maximum $\Delta(G)$-edge-colorable subgraph of a graph G, and let $E(G)-E(H)=\left\{e_{i}=\left(u_{i}, v_{i}\right) \mid 1 \leq i \leq n\right\}$ be the set of uncolored edges. Assume that H is properly edge-colored with colors $1, \ldots, \Delta(G)$. Then there is an assignment of colors $\alpha_{1} \in \bar{C}\left(u_{1}\right), \beta_{1} \in \bar{C}\left(v_{1}\right), \ldots, \alpha_{n} \in \bar{C}\left(u_{n}\right), \beta_{n} \in$ $\bar{C}\left(v_{n}\right)$ to the uncolored edges such that $E\left(C_{\alpha_{i}, \beta_{i}}^{e_{i}}\right) \cap E\left(C_{\alpha_{j}, \beta_{j}}^{e_{j}}\right)=\emptyset$, for all $1 \leq$ $i<j \leq n$.

The next Theorem generalizes the result of [4] that any 2-factor of a cubic graph can be extended to a maximum 3-edge-colorable subgraph to arbitrary graphs.

Theorem 4 Let \bar{F} be any set of vertex-disjoint cycles of a graph G with $\Delta=$ $\Delta(G) \geq 3$. Then there is a maximum Δ-edge-colorable subgraph H of G, such that $E(\bar{F}) \subseteq E(H)$.

Corollary 1 Let \bar{F} be any 2 -factor of a graph G with $\Delta(G) \geq 3$. Then there is a maximum $\Delta(G)$-edge-colorable subgraph H of G, such that $E(\bar{F}) \subseteq E(H)$.

Let G be a graph. The length of the shortest (odd) cycle of the underlying simple graph of G is called (odd) girth of G. If $X \subseteq V(G)$, then $\partial_{G}(X)$ denotes the set of edges with precisely one end in X.

Theorem 5 Let H be any maximum $\Delta(G)$-edge-colorable subgraph of a graph G. Then
(1) $\left|\partial_{H}(X)\right| \geq\left\lceil\frac{\left|\partial_{G}(X)\right|}{2}\right\rceil$ for each $X \subseteq V(G)$.
(2) $d_{H}(x) \geq\left\lceil\frac{d_{G}(x)}{2}\right\rceil$ for each vertex x of G.
(3) $\delta(H) \geq\left\lceil\frac{\delta(G)}{2}\right\rceil$.

The bounds are best possible.
Theorem 6 Let G be a graph with girth $g \in\{2 k, 2 k+1\}(k \geq 1)$, and H a maximum $\Delta(G)$-edge-colorable subgraph of G, then $|E(H)| \geq \frac{2 k}{2 k+1}|E(G)|$, and the bound is best possible.

Theorem 7 Every simple graph G contains a maximum Δ-edge-colorable subgraph such that the uncolored edges form a matching.

Theorem 7 is equivalent to:
Theorem 8 For any simple graph $G: r_{e}(G)=r_{e}^{\prime}(G)$.

It can be shown that a maximum Δ-edge-colorable subgraph of a multigraph can be class II as well. This cannot be the case for simple graphs as the following theorem shows.

Theorem 9 Let H be a maximum $\Delta(G)$-edge-colorable subgraph of a simple graph G, then $\Delta(H)=\Delta(G)$, i.e. H is class I.

Theorem 7 says, that every simple class II graph G has a maximum Δ-colorable subgraph H, such that $\chi^{\prime}(G \backslash E(H))=1$. We believe that this can be generalized to multigraphs:

Conjecture 1 Let G be a graph with $\chi^{\prime}(G)=\Delta(G)+k$ ($k \geq 0$). Then there is a maximum $\Delta(G)$-colorable subgraph H of G such that $\chi^{\prime}(G \backslash E(H))=k$.

This conjecture is equivalent to the following statement.
Conjecture 2 For any graph $G: r_{e}(G)=r_{e}^{\prime}(G)$.

References

[1] M. O. Albertson, R. Haas, Parsimonious edge coloring, Disc. Math. 148 (1996) 1-7
[2] H. A. Kierstead, On the chromatic index of multigraphs without large triangles, J. Comb. Theory, Ser. B 36 (1984) 156-160
[3] V. V. Mkrtchyan, S. Petrosyan, G. Vardanyan, On disjoint matchings in cubic graphs, Disc. Math. to appear, (available at: http://arxiv.org/abs/0803.0134)
[4] V. V. Mkrtchyan, S. Petrosyan, G. Vardanyan, On disjoint matchings in cubic graphs: maximum 3-edge-colorable subgraphs, under review, (available at: http://arxiv.org/abs/0909.2767)
[5] R. Rizzi, Approximating the maximum 3-edge-colorable subgraph problem, Disc. Math. 309 (2009) 4166-4170.
[6] E. Steffen, Classifications and characterizations of snarks, Disc. Math. 188 (1998) 183-203.
[7] E. Steffen, A refinement of Vizing's theorem. Disc. Math. 218 (2000) 289-291.
[8] E. Steffen, Measurements of edge-uncolorability, Disc. Math. 280 (2004) 191-214.
[9] T. R. Jensen, B. Toft, Graph coloring problems, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley \& Sons, Inc., New York, 1995.

[^0]: Email addresses: vahanmkrtchyan2002@\{ysu.am, ipia.sci.am,yahoo.com\} (Vahan V. Mkrtchyan,), es@upb.de (Eckhard Steffen).
 ${ }^{1}$ The author is supported by a fellowship from the Heinrich Hertz-Stiftung

