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1 Introduction

The special case of flows in planar graphs has always played a significant role in
network flow theory. The predecessor of Ford and Fulkerson’s well-known path
augmenting algorithm – and actually the first combinatorial flow algorithm
at all – was a special version for s-t-planar networks, i.e., those networks
where s and t can be embedded adjacent to the infinite face [3]. The basic
idea of this uppermost path algorithm is to iteratively augment flow along the
“uppermost” non-saturated s-t-path in the planar embedding of the network.
In 2006, Borradaile and Klein [1] established an intuitive generalization of this
algorithm to arbitrary planar graphs, which relies on a partial order on the
set of s-t-paths in the graph, called the left/right relation.

We connect these results from planar network flow theory with another field
of combinatorial optimization, the optimization on lattice structures. In 1978,
Hoffman and Schwartz introduced the notion of lattice polyhedra [5], a gener-
alization of Edmond’s polymatroids that is based on lattices, and proved total
dual integrality of the corresponding inequaltity systems if certain additional
properties hold, which are defined below.

Definition 1 Let E be a finite set, L ⊆ 2E and � be a partial order on L.
Then (L,�) is a lattice if for any pair of elements S, T ∈ L, there is a unique
largest common lower bound S ∧ T called meet and a unique least common
upper bound S ∨ T called join. A lattice is submodular if (S ∧ T )∩ (S ∨ T ) ⊆
S ∩ T and (S ∧ T ) ∪ (S ∨ T ) ⊆ S ∪ T for all S, T ∈ L. It is consecutive if
S ∩ U ⊆ T for all S, T, U ∈ L with S � T � U .

Based on the total dual integrality result by Hoffman and Schwartz, several
different versions of two-phase-greedy algorithms were developed by Frank [4]
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and Faigle and Peis [2] in order to solve linear programming problems on
lattice polyhedra like the packing problem

max

{

rT y : y ∈ R
L

+,
∑

S∈L:e∈S

y(S) ≤ c(e) ∀e ∈ E

}

and its dual if L is a submodular and consecutive lattice and the objective
function r is supermodular and monotone 1 . Clearly, the path formulation of
the maximum flow problem is a special case of the general packing problem.

Results: We show that the left/right relation induces a submodular lattice
on the set of simple s-t-paths in a planar graph. If the network is s-t-planar,
this lattice is also consecutive, thus meeting all requirements of Hoffman and
Schwartz’ framework. This implies that Ford and Fulkerson’s uppermost path
algorithm is a special case of the two-phase greedy algorithm on lattice poly-
hedra (with r ≡ 1). Even more, this algorithm can also solve a weighted flow
problem, if the weights on the paths are supermodular and monotone. An
additional result will show that whenever the graph is just planar but not
s-t-planar, there is no partial order on the paths that induces a consecutive
and submodular lattice.

2 The left/right relation and the path lattice

We are given a directed graph G = (V, E) with a fixed planar embedding, a
fixed infinite face f∞ and two designated vertices s, t ∈ V . In our setting, paths
are allowed to use edges in either direction 2 , i.e., every path P is represented

by a subset of
←→
E := {−→e ,←−e : e ∈ E} such that −→e ∈ P if P uses the edge e in

its forward direction and←−e ∈ P if P uses e in backward direction. We denote
the set of all simple s-t-paths in G by P ⊆ 2

←→
E . We will analyze a partial

order on P called left/right relation and show that it induces a submodular
lattice (cf. Theorem 2), which is furthermore consecutive if the embedding
is s-t-planar (cf. Theorem 3). Finally, we will show that there is no partial
order on P that induces a consecutive and submodular lattice, if there is no
s-t-planar embedding of the graph (cf. Theorem 4).

2.1 The left/right relation

The left/right relation as presented in this subsection is a partial order on P
due to Klein [6]. We consider the cycle space of G, i.e., the subspace of all those
vectors in R

E that fulfill flow conservation at all vertices. The elements of the
cycle space are called circulations. The vectors corresponding to the clockwise

1 These requirements on the weight function r are explained in [2].
2 The resulting lattice can later be restricted to directed paths, maintaining all its
properties.
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boundary of the non-infinite faces in the embedded graph form a basis of the
cycle space. Thus, for every circulation, there is a unique face potential, i.e., an
assignment of numbers to the faces corresponding to the circulation. We say
a circulation is clockwise if the corresponding face potential is non-negative.

A path P ∈ P induces a vector δP ∈ R
E by δP (e) = 1 if −→e ∈ P , δP (e) = −1 if

←−e ∈ P and δP (e) = 0 otherwise. It is easy to see that for two paths P, Q ∈ P,
the vector δP −δQ is a circulation. We say that P is left of Q and write P � Q

if this circulation is clockwise. It can be easily verified that the left/right
relation arising from this definition is a partial order on P. More details on
the definition can be found in [1] and [7].

2.2 The path lattice in planar graphs in general

We give a short description of how to obtain a largest common lower bound of
two paths P, Q ∈ P with respect to the left/right relation. Let φ be the face po-
tential corresponding to the circulation δP−δQ. For S+ := {f ∈ V ∗ : φ(f) > 0},
we define δP∧Q := δP −

∑

f∈S+ φ(f)δf . The vector δP∧Q induces a set of darts

DP∧Q := {−→e : δP∧Q(e) = 1} ∪ {←−e : δP∧Q(e) = −1}.

Intuitively speaking, the set DP∧Q is obtained by subtracting the “clockwise
part” of the circulation P−Q from P . Unfortunately, this set is not necessarily
a simple path. However, by flow decomposition, it can be decomposed into a
path and several cycles, which can be shown to be clockwise. From this, it can
be derived that the path actually is the meet of P and Q. Analogously, one
can construct a set DP∨Q containing the join of P and Q. A detailed proof of
this result can be found in [7].

Theorem 2 (P,�) is a submodular lattice with P ∧Q being the unique sim-
ple s-t-path contained in DP∧Q and P ∨ Q being the unique simple s-t-path
contained in DP∨Q.

Note that the path lattice is not consecutive in general.

2.3 The path lattice in s-t-planar graphs

In case the embedding of G is s-t-planar, meet and join of the path lattice can
be characterized in a more convenient way than in the general case, and even
more, the lattice turns out to be consecutive. As already mentioned, Ford and
Fulkerson used the existence of a unique uppermost path from s to t in every
s-t-planar graph for their uppermost path algorithm. Formally, this uppermost
path (and likewise a lowermost path) can be defined as the unique path with
the infinite face to the left (right) of all of its elements.

For some paths P, Q ∈ P let the subgraph of G containing only the edges
of P and Q be denoted by G[E(P ∪ Q)]. It can be shown that P is left of
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Q if and only if P is the uppermost path in G[E(P ∪ Q)] (or, equivalently,
Q is the lowermost path in G[E(P ∪ Q)]). Given this characterization of the
left/right relation in s-t-planar graphs, it is easy to verify that if P and Q are
incomparable, join and meet are also the uppermost and lowermost paths of
G[E(P ∪ Q)]. In order to show consecutivity, one verifies that P � Q � R

implies that P and R are uppermost and lowermost path of G[E(P ∪Q∪R)]
as well, and thus any dart in d ∈ P ∩R is a loop in the dual and, by cycle/cut
duality, a one-element s-t-cut in the primal graph. This implies d ∈ Q.

Theorem 3 If the embedding of G is s-t-planar, (P,�) is a consecutive and
submodular lattice with P ∧ Q being the lowermost path in G[E(P ∪ Q)] and
P ∨Q being the uppermost path in G[E(P ∪Q)].

As a direct corollary, Ford and Fulkerson’s uppermost path algorithm [3] turns
out to be a special case of Phase 1 of the two-phase greedy algorithm for
submodular lattice polyhedra [2].

2.4 The negative result and a characterization of s-t-planar graphs

As pointed out above, the path lattice is not consecutive on planar graphs
in general. It can actually be shown that no graph that is planar but not
s-t-planar can be equipped with a partial order of the paths that achieves
consecutivity and submodularity at the same time. Together with the above
positive result for s-t-planar graphs, we achieve the following characterization
of s-t-planar graphs.

Theorem 4 A graph is s-t-planar if and only if it is planar and there is a par-
tial order on the set of its s-t-paths that induces a consecutive and submodular
lattice.

Sketch of proof. Consider the two graphs K−5 and K−3,3 that are obtained from
the Kuratowski graphs K5 and K3,3 by deleting the edge connecting s and t. It
can be shown by very elementary arguments that for both K−5 and K−3,3 there
is no partial order of the s-t-paths that induces a submodular and consecutive
lattice. The result then follows by applying Kuratowski’s Theorem.

3 Conclusion

We provided an extensive analysis of the left/right relation on the set of s-
t-paths in a planar graph. The relation induces a submodular lattice, which
is even consecutive if the graph is s-t-planar. The latter result implies that
the uppermost path algorithm by Ford and Fulkerson is a special case of the
two-phase greedy algorithm for packing problems on submodular lattice poly-
hedra. We furthermore showed that submodularity and consecutivity cannot
be achieved simultaneously by any partial order if the graph is not s-t-planar,
thus providing a characterization of this special class of planar graphs.
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