Lattices and maximum flow algorithms in planar graphs

Jannik Matuschke and Britta Peis
Technische Universität Berlin, Institut für Mathematik
Straße des 17. Juni 136, 10623 Berlin, Germany

Key words: Lattice polyhedra, Flows in planar graphs, Left/right relation

1 Introduction

The special case of flows in planar graphs has always played a significant role in network flow theory. The predecessor of Ford and Fulkerson's well-known path augmenting algorithm - and actually the first combinatorial flow algorithm at all - was a special version for s - t-planar networks, i.e., those networks where s and t can be embedded adjacent to the infinite face [3]. The basic idea of this uppermost path algorithm is to iteratively augment flow along the "uppermost" non-saturated s - t-path in the planar embedding of the network. In 2006, Borradaile and Klein [1] established an intuitive generalization of this algorithm to arbitrary planar graphs, which relies on a partial order on the set of s - t-paths in the graph, called the left/right relation.

We connect these results from planar network flow theory with another field of combinatorial optimization, the optimization on lattice structures. In 1978, Hoffman and Schwartz introduced the notion of lattice polyhedra [5], a generalization of Edmond's polymatroids that is based on lattices, and proved total dual integrality of the corresponding inequaltity systems if certain additional properties hold, which are defined below.

Definition 1 Let E be a finite set, $\mathcal{L} \subseteq 2^{E}$ and \preceq be a partial order on \mathcal{L}. Then (\mathcal{L}, \preceq) is a lattice if for any pair of elements $S, T \in \mathcal{L}$, there is a unique largest common lower bound $S \wedge T$ called meet and a unique least common upper bound $S \vee T$ called join. A lattice is submodular if $(S \wedge T) \cap(S \vee T) \subseteq$ $S \cap T$ and $(S \wedge T) \cup(S \vee T) \subseteq S \cup T$ for all $S, T \in \mathcal{L}$. It is consecutive if $S \cap U \subseteq T$ for all $S, T, U \in \mathcal{L}$ with $S \preceq T \preceq U$.

Based on the total dual integrality result by Hoffman and Schwartz, several different versions of two-phase-greedy algorithms were developed by Frank [4]
and Faigle and Peis [2] in order to solve linear programming problems on lattice polyhedra like the packing problem

$$
\max \left\{r^{T} y: y \in \mathbb{R}_{+}^{\mathcal{L}}, \sum_{S \in \mathcal{L}: e \in S} y(S) \leq c(e) \forall e \in E\right\}
$$

and its dual if \mathcal{L} is a submodular and consecutive lattice and the objective function r is supermodular and monotone ${ }^{1}$. Clearly, the path formulation of the maximum flow problem is a special case of the general packing problem.

Results: We show that the left/right relation induces a submodular lattice on the set of simple s - t-paths in a planar graph. If the network is s - t-planar, this lattice is also consecutive, thus meeting all requirements of Hoffman and Schwartz' framework. This implies that Ford and Fulkerson's uppermost path algorithm is a special case of the two-phase greedy algorithm on lattice polyhedra (with $r \equiv 1$). Even more, this algorithm can also solve a weighted flow problem, if the weights on the paths are supermodular and monotone. An additional result will show that whenever the graph is just planar but not s-t-planar, there is no partial order on the paths that induces a consecutive and submodular lattice.

2 The left/right relation and the path lattice

We are given a directed graph $G=(V, E)$ with a fixed planar embedding, a fixed infinite face f_{∞} and two designated vertices $s, t \in V$. In our setting, paths are allowed to use edges in either direction ${ }^{2}$, i.e., every path P is represented by a subset of $\overleftrightarrow{E}:=\{\vec{e}, \overleftarrow{e}: e \in E\}$ such that $\vec{e} \in P$ if P uses the edge e in its forward direction and $\overleftarrow{e} \in P$ if P uses e in backward direction. We denote the set of all simple s - t-paths in G by $\mathcal{P} \subseteq 2^{\overleftrightarrow{E}}$. We will analyze a partial order on \mathcal{P} called left/right relation and show that it induces a submodular lattice (cf. Theorem 2), which is furthermore consecutive if the embedding is s-t-planar (cf. Theorem 3). Finally, we will show that there is no partial order on \mathcal{P} that induces a consecutive and submodular lattice, if there is no s-t-planar embedding of the graph (cf. Theorem 4).

2.1 The left/right relation

The left/right relation as presented in this subsection is a partial order on \mathcal{P} due to Klein [6]. We consider the cycle space of G, i.e., the subspace of all those vectors in \mathbb{R}^{E} that fulfill flow conservation at all vertices. The elements of the cycle space are called circulations. The vectors corresponding to the clockwise

[^0]boundary of the non-infinite faces in the embedded graph form a basis of the cycle space. Thus, for every circulation, there is a unique face potential, i.e., an assignment of numbers to the faces corresponding to the circulation. We say a circulation is clockwise if the corresponding face potential is non-negative.

A path $P \in \mathcal{P}$ induces a vector $\delta_{P} \in \mathbb{R}^{E}$ by $\delta_{P}(e)=1$ if $\vec{e} \in P, \delta_{P}(e)=-1$ if $\overleftarrow{e} \in P$ and $\delta_{P}(e)=0$ otherwise. It is easy to see that for two paths $P, Q \in \mathcal{P}$, the vector $\delta_{P}-\delta_{Q}$ is a circulation. We say that P is left of Q and write $P \succeq Q$ if this circulation is clockwise. It can be easily verified that the left/right relation arising from this definition is a partial order on \mathcal{P}. More details on the definition can be found in [1] and [7].

2.2 The path lattice in planar graphs in general

We give a short description of how to obtain a largest common lower bound of two paths $P, Q \in \mathcal{P}$ with respect to the left/right relation. Let ϕ be the face potential corresponding to the circulation $\delta_{P}-\delta_{Q}$. For $S^{+}:=\left\{f \in V^{*}: \phi(f)>0\right\}$, we define $\delta^{P \wedge Q}:=\delta_{P}-\sum_{f \in S^{+}} \phi(f) \delta_{f}$. The vector $\delta^{P \wedge Q}$ induces a set of darts

$$
D^{P \wedge Q}:=\left\{\vec{e}: \delta^{P \wedge Q}(e)=1\right\} \cup\left\{\overleftarrow{e}: \delta^{P \wedge Q}(e)=-1\right\}
$$

Intuitively speaking, the set $D^{P \wedge Q}$ is obtained by subtracting the "clockwise part" of the circulation $P-Q$ from P. Unfortunately, this set is not necessarily a simple path. However, by flow decomposition, it can be decomposed into a path and several cycles, which can be shown to be clockwise. From this, it can be derived that the path actually is the meet of P and Q. Analogously, one can construct a set $D^{P \vee Q}$ containing the join of P and Q. A detailed proof of this result can be found in [7].

Theorem $2(\mathcal{P}, \preceq)$ is a submodular lattice with $P \wedge Q$ being the unique simple s-t-path contained in $D^{P \wedge Q}$ and $P \vee Q$ being the unique simple s-t-path contained in $D^{P \vee Q}$.

Note that the path lattice is not consecutive in general.

2.3 The path lattice in s-t-planar graphs

In case the embedding of G is s - t-planar, meet and join of the path lattice can be characterized in a more convenient way than in the general case, and even more, the lattice turns out to be consecutive. As already mentioned, Ford and Fulkerson used the existence of a unique uppermost path from s to t in every s - t-planar graph for their uppermost path algorithm. Formally, this uppermost path (and likewise a lowermost path) can be defined as the unique path with the infinite face to the left (right) of all of its elements.

For some paths $P, Q \in \mathcal{P}$ let the subgraph of G containing only the edges of P and Q be denoted by $G[E(P \cup Q)]$. It can be shown that P is left of
Q if and only if P is the uppermost path in $G[E(P \cup Q)]$ (or, equivalently, Q is the lowermost path in $G[E(P \cup Q)])$. Given this characterization of the left/right relation in s-t-planar graphs, it is easy to verify that if P and Q are incomparable, join and meet are also the uppermost and lowermost paths of $G[E(P \cup Q)]$. In order to show consecutivity, one verifies that $P \succeq Q \succeq R$ implies that P and R are uppermost and lowermost path of $G[E(P \cup Q \cup R)]$ as well, and thus any dart in $d \in P \cap R$ is a loop in the dual and, by cycle/cut duality, a one-element s - t-cut in the primal graph. This implies $d \in Q$.

Theorem 3 If the embedding of G is s-t-planar, (\mathcal{P}, \preceq) is a consecutive and submodular lattice with $P \wedge Q$ being the lowermost path in $G[E(P \cup Q)]$ and $P \vee Q$ being the uppermost path in $G[E(P \cup Q)]$.

As a direct corollary, Ford and Fulkerson's uppermost path algorithm [3] turns out to be a special case of Phase 1 of the two-phase greedy algorithm for submodular lattice polyhedra [2].

2.4 The negative result and a characterization of s-t-planar graphs

As pointed out above, the path lattice is not consecutive on planar graphs in general. It can actually be shown that no graph that is planar but not s-t-planar can be equipped with a partial order of the paths that achieves consecutivity and submodularity at the same time. Together with the above positive result for s-t-planar graphs, we achieve the following characterization of s - t-planar graphs.

Theorem 4 A graph is s-t-planar if and only if it is planar and there is a partial order on the set of its s-t-paths that induces a consecutive and submodular lattice.

Sketch of proof. Consider the two graphs K_{5}^{-}and $K_{3,3}^{-}$that are obtained from the Kuratowski graphs K_{5} and $K_{3,3}$ by deleting the edge connecting s and t. It can be shown by very elementary arguments that for both K_{5}^{-}and $K_{3,3}^{-}$there is no partial order of the s - t-paths that induces a submodular and consecutive lattice. The result then follows by applying Kuratowski's Theorem.

3 Conclusion

We provided an extensive analysis of the left/right relation on the set of s -t-paths in a planar graph. The relation induces a submodular lattice, which is even consecutive if the graph is s - t-planar. The latter result implies that the uppermost path algorithm by Ford and Fulkerson is a special case of the two-phase greedy algorithm for packing problems on submodular lattice polyhedra. We furthermore showed that submodularity and consecutivity cannot be achieved simultaneously by any partial order if the graph is not s-t-planar, thus providing a characterization of this special class of planar graphs.

References

[1] G. Borradaile, P. Klein, An $O(n \log n)$ algorithm for maximum st-flow in a directed planar graph, in: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2006, pp. 524-533.
[2] U. Faigle, B. Peis, Two-phase greedy algorithms for some classes of combinatorial linear programs, in: Proceedings of the Nineteenth Annual ACMSIAM Symposium on Discrete Algorithms, ACM, New York, 2008, pp. 161-166.
[3] L. R. Ford, Jr., D. R. Fulkerson, Maximal flow through a network, Canadian Journal of Mathematics. Journal Canadien de Mathématiques 8 (1956)
[4] A. Frank, Increasing the rooted-connectivity of a digraph by one, Mathematical Programming 84 (3, Ser. B) (1999) 565-576. 399-404.
[5] A. J. Hoffman, D. E. Schwartz, On lattice polyhedra, in: A. Hajnal, V. T. Sós (Eds.), Proceedings of the Fifth Hungerian Colloquium on Combinatorics, Vol. I, Vol. 18 of Colloquia mathematica Societatis János Bolyai, North-Holland, Amsterdam, 1978, pp. 593-598.
[6] P. N. Klein, Multiple-source shortest paths in planar graphs, in: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2005, pp. 146-155.
[7] J. Matuschke, Lattices and maximum flow algorithms in planar graphs, Diploma thesis, TU Berlin (2009).

[^0]: $\overline{1}$ These requirements on the weight function r are explained in [2].
 2 The resulting lattice can later be restricted to directed paths, maintaining all its properties.

