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Abstract

We present an algorithm for the independent set problem on semi-random graphs,
which are generated as follows: An adversary chooses an n-vertex graph, and then
each edge is flipped independently with a probability of ε > 0. Our algorithm runs
in expected polynomial time and guarantees an approximation ratio of roughly
O(

√
nε), which beats the inapproximability bounds.

1 Introduction and Our Results

Given an undirected graph G = (V, E), the goal of the maximum indepen-
dent set problem (IS) is to find an independent set I ⊆ V (i.e., no edge of
E connects two vertices of I) of maximum cardinality. The size of the largest
such set is G’s independence number α(G). IS is NP-hard and even hard to
approximate with a ratio of O(n1−δ) for every δ > 0, where n is the number
of vertices [5]. The best worst-case polynomial-time approximation algorithm

for IS achieves an approximation ratio of O(n (log log n)2

(log n)3
) [2]. Often, however,

approximation algorithms show a better performance than their worst-case
guarantees promise. To explain the gap between worst-case and observed ap-
proximability, the average-case approximability of IS with respect to random
graphs in the G(n, p) model has been analyzed by Krivelevich and Vu [4]. They
achieve an approximation ratio of O(

√
np/ log n) in expected polynomial time.

A drawback of such an average-case analysis is that it often says little about
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GreedyIS(G)
1: Set C1 := {1} and χ := 1.
2: For v = 2, . . . , n: If there is an i such that Ci ∪ {v} is an independent set

of G, then Ci := Ci ∪ {v} for the smallest such i. Otherwise, create a new
class by setting χ := χ + 1 and Cχ := {v}.

3: Choose i that maximizes |Ci|. Output I = Ci.

Algorithm 1: A simple greedy algorithm for independent set.

typical performance: random instances have very special properties with high
probability and often do not reflect real instances. To circumvent this, graph
problems have been analyzed with semi-random inputs [1,3].

In this paper, we analyze the approximability of IS for a semi-random input
model: An adversary specifies a graph G = (V, E). Then, a random graph
G = (V, E) is produced by flipping each potential edge in G independently
with a probability of ε > 0. More precisely, for every e ∈ E, we have e ∈ E
with a probability of pe = 1 − ε, while for every e /∈ E, we have e ∈ E with
a probability of pe = ε. We call this distribution G(G, ε). In the extreme case
ε = 0, the adversary has full power and we have G = G. For larger values of ε,
the adversary loses power. We adapt the algorithm of Krivelevich and Vu [4]
to our semi-random model and show that it guarantees an approximation ratio
of roughly O(

√
nε) in expected polynomial time.

2 Approximating Independent Set

For simplicity, we always assume V = {1, . . . , n} from now on. GreedyIS

(Algorithm 1) is a simple greedy algorithm, which outputs an independent
set. GreedyIS is later used as a subroutine of ApproxIS.

Lemma 1 Let G = (V, E) be a graph, and let ε be arbitrary with n−1/2 ≤
ε ≤ 1/2. Let gis(G, ε) = 1

32
· min{ lnn

ε
, n2 ln n
|E| ln(1/ε)

}. Let I be the independent set

of G computed by GreedyIS, where G is drawn from G(G, ε). Then Pr[|I| <
gis(G, ε)] ≤ e−n ln n.

We also need an upper bound on the independence number of a graph drawn
from G(G, ε). The proof is an adaption of Krivelevich and Vu’s technique [4] to
our semi-random model. For a graph G and a random graph G = (V, E) drawn
from G(G, ε), let A = A(G, G, ε) = (aij)1≤i,j≤n be the n × n-matrix given by
aij = 1 if e = {i, j} 6∈ E and aij = −(1 − pe)/pe if e = {i, j} ∈ E , where
pe = ε if e /∈ E and pe = 1 − ε if e ∈ E. Note that A depends on G since G
defines the values pe. ¿From the results of Krivelevich and Vu [4, Lemma 2.4],
we easily get α(G) ≤ λ1(A(G, G, ε)) for any G, ε, and G, where λ1 denotes
the largest eigenvalue of a matrix. We have to show that λ1(A(G, G, ε)) =
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ApproxIS(G = (V, E), G, ε)
1: I := GreedyIS(G). If |I| < gis(G, ε), go to Step 5.

2: Compute λ1(A(G, G, ε)). If λ1 < 28 · (log n) ·
√

n/ε, then output I.

3: Compute |N(S ′)| for all sets S ′ ⊆ V with |S ′| = (8 log n)/ε. If |N(S ′)| ≤
(2 log n) ·

√

n/ε for all such subsets S ′, output I.

4: Check all subsets S ′′ ⊆ V with |S ′′| = (8 log n) ·
√

n/ε. If none of them is
independent, output I.

5: Try all subsets of V and output a largest independent set found.

Algorithm 2: Approximation algorithm for independent set with guaranteed
approximation ratio and expected polynomial running-time.

O((log n) ·
√

n/ε) with high probability. Krivelevich and Vu’s proof [4] of the

corresponding result for G(n, p) graphs is based on a concentration result for
the largest eigenvalue of a matrix. To apply their techniques, we first have to
determine the expected value E[λ1(A)] of the largest eigenvalue (Lemma 2).
Using this, we can derive a tail bound for λ1(A) (Lemma 3). Together with
α(G) ≤ λ1(A), we then get a concentration result for the size of the largest
independent set in G(G, ε) graphs (Theorem 4).

Lemma 2 Fix a graph G = (V, E), and let ε = Ω((log n)2/n), ε ≤ 1/2. Let

A = A(G, G, ε) for G drawn from G(G, ε). Then E[λ1(A)] ≤ 27(log n)
√

n/ε.

Lemma 3 Under the same assumptions as in Lemma 2, we have Pr[λ1(A) ≥
28(log n)

√

n/ε] ≤ 4 exp(−29nε(log n)2).

Theorem 4 Fix a graph G = (V, E), and let ε = Ω((log n)2/n), ε ≤ 1/2. Let

G be a random graph drawn from G(G, ε). Then E[α(G)] ≤ 27 · (log n) ·
√

n/ε

and Pr[α(G) ≥ 28 · (log n) ·
√

n/ε] ≤ 4 exp(−29 · nε · (log n)2).

Our algorithm ApproxIS (Algorithm 2) gets the adversarial graph G, the
flip probability ε, and the random graph G from G(G, ε) as input. It runs
GreedyIS and tries to certify that this yields a good approximation. If this
fails, ApproxIS turns to brute-force search. Let us briefly discuss the influence
of G. With decreasing ε and increasing |E|, the graph G gains influence. This
is reflected in the approximation ratio below. In Step 3, the following definition
is used: For a graph G = (V, E) and S ⊆ V , the non-neighborhood N(S) of S
is the set of vertices not adjacent to S.

Theorem 5 Fix a graph G = (V, E) and a flip probability n−1/2 ≤ ε ≤ 1/2.
Let G be drawn from G(G, ε). Then ApproxIS(G, G, ε) has polynomial expected

running time. If ε is sufficiently large, i.e.,
ln(1/ε)

ε
≤ n2

|E| , it guarantees an

approximation ratio of O(
√

nε). Otherwise, it guarantees an approximation

ratio of O
(

|E| log(1/ε)

n3/2
√

ε

)

.
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GreedyIS alone is an algorithm with worst-case polynomial running-time, but
the approximation ratio then holds only in expectation and with high proba-
bility. This complements the performance of ApproxIS. The analysis follows
from Lemma 1 and Theorem 4.

Corollary 6 Let G = (V, E) be a graph, and let n−1/2 ≤ ε ≤ 1/2. Then

GreedyIS achieves an expected approximation ratio of O
(

√
n/ε

min{1/ε,n2/(|E| ln(1/ε))}

)

on graphs drawn from G(G, ε). If
ln(1/ε)

ε
≤ n2

|E|, i.e., ε is large enough, this sim-

plifies to O(
√

nε). The approximation ratio is not only achieved in expectation,

but also with a probability of at least 1 − exp(−Ω(nε(log n)2)).

3 Discussion

We have analyzed the approximability of IS in a semi-random input model.
We have presented an approximation algorithm that guarantees an approxima-
tion ratio of roughly O(

√
nε) in expected polynomial time. A simple greedy

algorithm (Algorithm 1) alone achieves an expected approximation ratio of
O(

√
nε) in worst-case polynomial time. A subtlety of our Algorithm 2 is that

it needs the original graph as an additional input. We believe that avoiding
this requires new techniques if it can be avoided at all. The reason is that
our goal was a guaranteed approximation ratio. To achieve this, the algorithm
has to know when to switch to brute-force search in order to maintain also an
expected polynomial running-time. GreedyIS alone, which needs neither the
original graph nor ε, has complementary properties: worst-case polynomial
running-time but the approximation ratio is only achieved in expectation.
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