
Determining Optimal Stationary Strategies

for Discounted Stochastic Optimal Control

Problem on Networks

Dmitrii Lozovanu a,∗, Stefan Pikl b

aInstitute of Mathematics and Computer Science, Academy of Sciences,

Academy str., 5, Chisinau, MD–2028, Moldova

bInstitut für Theoretische Informatik, Mathematik und Operations Research,

Fakultät fur Informatik, Universität der Bundeswehr, München

Abstract

The stochastic version of discrete optimal control problem with infinite time horizon
and discounted integral-time cost criterion is considered. This problem is formulated
and studied on certain networks. A polynomial time algorithm for determining the
optimal stationary strategies for the considered problems is proposed and some
applications of the algorithm for related Markov decision problems are described.

Key words: Discounted Stochastic Control Problem, Optimal Stationary
Strategies, Polynomial Time Algorithm, Discounted Markov Processes

1 Introduction, Problem Formulation and the Main Concept

In this paper we consider the stochastic version of the following discrete opti-
mal control problem with infinite time horizon and a discounted integral-time
cost criterion by trajectory. Let a time-discrete system L with a finite set of
states X be given. Assume that the dynamics of the system is described by
a directed graph of states transitions G = (X,E) where the set of vertices
X corresponds to the set of states of the dynamical system; an arbitrary di-
rected edge e = (x, y) expresses the possibility of the system to pass from
the state x = x(t) to the state y = x(t) at every discrete moment of time
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t = 0, 1, 2, . . .. Hereby, a directed edge e = (x, y) ∈ E corresponds to a fea-
sible stationary control of system L in the state x and the subset of edges
E+(x) = {e = (x, y) ∈ E|y ∈ X} corresponds to the set of feasible stationary
controls of the system in the state x ∈ X. We assume that on the edge set E a
cost function c : E → R is defined which assigns a cost ce to each directed edge
e = (x, y) ∈ E when the system makes a transition from the state x = x(t) to
the state y = x(t+ 1) for every t = 0, 1, 2, . . .,i.e. the costs cx(t),x(t+1) does not
depend on t. We define a stationary control of system L in G as a map

s : x→ y ∈ X+(x) for x ∈ X,

where X+(x) = {y ∈ X|(x, y) ∈ E}. Let s be an arbitrary stationary con-
trol. Then the set of edges of the form (x, s(x)) in G generates a subgraph
Gs = (X,Es) where each vertex x ∈ X contains one leaving directed edge.
So, if the starting state x0 = x(0) is fixed then the system makes transi-
tions from one state to another through the corresponding directed edges
es
0, e

s
1, e

s
2, . . . , e

s
t , . . . , where es

t = (x(t), x(t+1)), t = 0, 1, 2, . . .. This sequence
of directed edges generates a trajectory x0 = x(0), x(1), x(2), . . . which leads
to a unique directed cycle. For an arbitrary stationary strategy s and a fixed
starting state x0 the discounted integral-time cost σλ

x0
(s) is defined as follows

σλ
x0

(s) =
∑

∞

t=0 λ
tces

t
, where λ, 0 ≤ λ < 1, is a given (so called) discounted

factor. Based on the results from [1,3] it is easy to show that for an arbitrary
stationary strategy s there exists σλ

x0
(s). If we denote by σλ(s) the vector col-

umn with components σλ
x(s) for x ∈ X then σλ

x0
(s) can be found by solving

the system of linear equations (I−λP s)σλ(s) = cs, where cs is the vector with
corresponding components c(x,s(x)) for x ∈ X, I is the identity matrix and
P s the matrix with elements ps

x,y for x, y ∈ X defined as follows

ps
x,y =











1, if y = s(x);

0, if y 6= s(x).

We are seeking for a stationary control s∗ such that σλ
x0

(s∗) = mins σ
λ
x0

(s). In
this paper we consider the stochastic version of the problem formulated above.
We assume that the dynamical system may admit states in which the vector
of control parameters is changed in a random way. So, the set of states X is
divided into two subsets X = X1 ∪X2, X1 ∩X2 = ∅ , where X1 represents
the set of states in which the decision maker is able to control the dynamical
system and X2 represents the set of states in which the dynamical system
makes transition to the next state in a random way. So, for every x ∈ X on
the set of feasible transitions E+(x) the distribution function p : E+(x) → R
is defined such that

∑

e∈E+(x) pe = 1, pe ≥ 0, ∀e ∈ E+(x) and the transitions
from the states x ∈ X2 to the the next states are made according to these
distribution functions. Here in a similar way as in the previous case of the
problem we assume that to each directed edge e = (x, y) ∈ E a cost ce is
associated when the system makes a transition from the state x = x(t) to
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the state y = x(t + 1) for every t = 0, 1, 2, . . .. In addition we assume that
the discounted factor λ, 0 ≤ λ < 1, and the starting state x0 are given. We
define a stationary control for the considered problem as a map

s : x→ y ∈ X+(x) for x ∈ X1.

For an arbitrary stationary strategy s we define the graph Gs = (X,Es∪EX2
),

where Es = {e = (x, y) ∈ E|x ∈ X1, y = s(x)}, EX2
= {e = (x, y)|x ∈

X2, y ∈ X}. This graph corresponds to a Markov process with the probability
matrix P s = (ps

x,y), where

ps
x,y =



























px,y, if x ∈ X2 and y = X;

1, if x ∈ X1 and y = s(x);

0, if x ∈ X1 and y 6= s(x).

For this Markov process with associated costs ce, e ∈ E we can define the
expected discounted integral-time cost σλ

x0
(s) in the same way as for dis-

counted Markov processes with rewards (if we treat the rewards as the costs).
In this paper we consider the problem of determining the strategy s∗ for which
σλ

x0
(s∗) = mins σ

λ
x0

(s).

2 The Main Results

The stationary case of the considered discounted stochastic control problem
can be studied and solved using the general concept of Markov decision pro-
cesses and the linear programming approach to corresponding problems (see
[1–3] ). Here we develop a new technique and we will formulate a new linear
programming problem which is more suitable to the specific context. To obtain
our linear model we shall use the following condition:











σx − λ
∑

y∈X+(x) p
s
x,yσy =

∑

y∈X+(x) c(x,y)p
s
x,y, ∀x ∈ X1;

σx − λ
∑

y∈X+(x) px,yσy =
∑

y∈X+(x) c(x,y)px,y, ∀x ∈ X2,
(1)

for an arbitrary stationary strategy s. For fixed s the probabilities ps
x,y, x ∈

X, y ∈ X+(x), satisfy the conditions:
∑

y∈X+(x) p
s
x,y = 1, ∀x ∈ X1; px,y ∈

{0, 1}, ∀x ∈ X1, y ∈ X+(x). The system (1) has a unique solution with respect
to σx for x ∈ X and therefore we uniquely determine σs

x0
. Thus we can consider

the linear programming problem: Maximize

ψps(σ) = σx0
(2)
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subject to (1). This problem has a unique feasible solution which is the optimal
one. The dual program for this problem is: Minimize

ϕps(α) =
∑

x∈X1

∑

y∈X(x)

c(x,y)p
s
x,yαx +

∑

x∈X2

∑

y∈X(x)

c(x,y)px,yαx (3)

subject to










αy − λ
∑

x∈X
−

1
(y) p

s
x,yαx − λ

∑

x∈X
−

2
(y) px,yαx ≥ 1, y = x0;

αy − λ
∑

x∈X
−

1
(y) p

s
x,yαx − λ

∑

x∈X
−

2
(y) px,yαx ≥ 0, ∀ y ∈ X \ {x0}.

(4)

If we take here the minimum with respect to s then we obtain a bilinear
programming problem with respect to αx and ps

x,y, where ps
x,y satisfy the con-

ditions:
∑

y∈X+(x) p
s
x,y = 1; ps

x,y ∈ {0, 1}, ∀x ∈ X1, y ∈ X+(x). We have proved
that the optimal solution is preserved if these conditions are changed by con-
ditions:

∑

y∈X+(x) p
s
x,yαx = αx, ∀x ∈ X1, ∀y ∈ X+(x);αx ≥ 0, βx,y ≥ 0, ∀x ∈

X, y ∈ X+(y). If we substitute after that operation βx,y = ps
x,yαx then our bi-

linear programming problem obtained on the bases of (3),(4) with mentioned
above conditions is reduced to the linear programming problem: Minimize

ϕ(α, β) =
∑

x∈X1

∑

y∈X(x)

c(x,y)βx,y +
∑

x∈X2

∑

y∈X(x)

c(x,y)px,yαx (5)

subject to


























αy − λ
∑

x∈X
−

1
(y) βx,y − λ

∑

x∈X
−

2
(y) px,yαx ≥ 1, y = xo;

αy − λ
∑

x∈X
−

1
(y) βx,y − λ

∑

x∈X
−

2
(y) px,yαx ≥ 0, ∀ y ∈ X \ {x0};

∑

y∈X−(x) βx,y = αx, ∀x ∈ X1; βx,y ≥ 0, αx ≥ 0, ∀x ∈ X, y ∈ X+(x),

(6)

where X−

1 (y) = {x ∈ X1|(x, y) ∈ E}, X−

2 (y) = {x ∈ X2|(x, y) ∈ E}. The
following result holds: If α∗

x, β
∗

x,y is a basic optimal solution of the problem
(5),(6) and α∗

x 6= 0 for x ∈ X1 then ps∗

x,y = β∗

x,y/α
∗

x ∈ {0, 1}, x ∈ X1, y ∈ X+(y);
the optimal stationary strategy s∗ : x → y for y ∈ X+(x) corresponds to
ps∗

x,y = 1 for x ∈ X1, y ∈ X+(x).
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