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1 Introduction

Telecommunications network design is the source of many interesting chal-
lenges in combinatorial optimization. Among the more recent ones there is
the design of the Next Generation Access Networks completely based on fiber
cable technology that, in certain cases, may reach single users and for this
reason are called Fiber To The Home networks (FTTH). These networks are
organized into two levels. In the first level few central offices are connected
with high capacity fiber cables to splicing cabinets usually located at street
intersections. Cabinets are then connected with users or houses. The fiber
technology allows to have very long connection cables thus few central offices
suffice to serve many more users with respect to traditional copper based net-
works. The new network characteristics and the incumbent deployment, that
requires a great extent of investments, motivate the investigations on quan-
titative optimization models and algorithms for the planning that can help
investors to decide which type of fiber network to select and how to opera-
tionally implement it. For a review on technical aspects refer to [2].

2 Problem Statement and Formulation

Planning a FTTH network can be seen as a particular case of facility location
problem where facilities belong to two levels. Given a set of candidate sites
O for central offices, a set of candidate sites C for cabinets and the set of
homes to be served S, the problem consists in deciding in which candidates
sites install central offices and cabinets, and connect users to central offices
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passing through a cabinet. In addition to these decisions the problem considers
also the multiplexing capability of cabinets. Depending on the type of device
installed in the cabinet, several signals transmitted on fibers to the users can
be groomed into a single fiber to the central office thus allowing for a capacity
saving in the leg central office-cabinet. The additional decision level is thus the
type of multiplexing technology to be installed in each cabinet. Decisions must
consider central office and cabinet installation costs, multiplexing technology
costs, and cable deployment costs.

Let s1
i and M1

i be the cost and the capacity (in terms of number of fibers)
of central office i. Let T be the types of technologies that can be installed in
cabinets. Multiplexing technology t in a cabinet allows to send mt channels
on a single fiber towards the central office. Let s2

jt be the installation cost of
cabinet j with technology t, and M2

j its maximum capacity in terms of number
of fibers coming from the users. With dij we indicate the known distance
(computed on the street graph) between any two sites i and j.

A possible formulation of the problem introduces two sets of binary variables:
y1

i , i ∈ O whose value is 1 if a central office is activated in site i, and y2
jt, j ∈

C, t ∈ T if a cabinet with multiplexing technology t is activated in site j.
We need another set of binary variables x2

jl whose value is 1 if basement l is
assigned to cabinet j. Integer variables x1

ij give the number of fibers connecting
central office i with cabinet j. The last two sets of variables are defined for
all pairs i, j and j, l such that the distance between the corresponding sites is
less than or equal to the maximum allowed distance. In order to consider only
pairs of sites within a feasible distance, we introduce a set E of pairs i, j with
i ∈ O and j ∈ C such that dij ≤ L1, and a set F of pairs j, l with j ∈ C and
l ∈ S such that djl ≤ L2.

The Integer Programming model is as follows:
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Constraints (2) state that each user must be connected to a cabinet. Con-
straints (3) are twofold: they force the activation of central office i (i.e. it sets
variable yi to 1) if at least one cabinet j is assigned to it, and they limit the
number of cabinets assigned to i according to the capacity. Constraints (4)
determine that either a cabinet is not active (when the left hand side is equal
to 0) or at most a multiplexing technology is assigned to it. While constraints
(6) relate the number of incoming fibers in a cabinet from users with the num-
ber of outgoing fibers towards the central office. This number must account
for the multiplexing factor installed in the cabinet. The objective function (1)
sums up the cost s1

i of each selected central office, the cost s2
jt for installing

the technology t in cabinet j and the connection costs for the fibers between
central offices and cabinets and between cabinets and the users.

In order to improve the linear relaxation, we introduce the following constraint:

∑

t∈T

y2

jt ≤
∑

ij∈E

x1

ij , ∀j ∈ C. (9)

that states that if a cabinet is activated it must be connected to a central
office. Though the improvement on the lower bound is modest, this constraint
does have an impact on our LP-based randomized rounding algorithm.

3 Solution Approaches and Computational Results

We have developed two approaches to solve the FTTH problem. The first
approach is a LP-based Randomized Rounding (LP-RR) algorithm, the second
is a Constraint-Based Local Search (CBLS) algorithm. Both approaches are
implemented exploiting features of the Comet constraint language [3]. For
the lack of space, we just briefly sketch the two approaches.

Our LP-RR algorithm, motivated by the results in [1], is based on the obser-
vation that once we have decided which central offices and which cabinets are
opened, that is, the variables y1 and y2 have been fixed to either 1 or 0, the
remaining problem is reduced to a generalized minimum cost flow problem on
a tripartite graph. So we first randomly round the variables y1 and y2, and
only then, the x1 and x2 variables.

The proposed CBLS approach relies on the use of invariants (see [4]) to incre-
mentally maintain the necessary information to guide the search procedure.
Once a greedy procedure has computed a feasible solution, we execute a local
search algorithm based on a simple move: select the basement l connected to
a cabinet j, and select a different open cabinet j′ 6= j that is not saturated
(it has some capacity left) such that moving l from j to j′ gives, after the
propagation of the new assignments, the best improvement in the objective
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Table 1
LP-based Randomized Rounding (LP-RR) versus Constraint-based Local Search
(CBLS). Cost and Time (in seconds). Standard deviations omitted.

LP-RR CBLS

|O| |C| |S| Cost Time Best-Cost Cost Time Best-Cost

3 10 100 2383 31 2383 2383 0.6 2383

10 35 400 6979 716 6966 6864 1.2 6860

15 65 841 13630 1735 13599 13349 44.6 13306

20 100 1521 25499 2465 25427 24850 316 24752

25 120 3025 55073 4768 55052 51752 330 51646

30 140 6084 121794 7705 121974 118224 1105 118135

35 150 10000 239668 26915 239668 229677 1817 229244

Table 2
Solving big Rome instances with the CBLS approach: gaps computed with respect
to the linear relaxation (P).

|O| |C| |S| Cost (stdev) Time (stdev) Best-Cost LP-Gap

30 140 5982 4561215 (0.01%) 1803.6 (0.14%) 4560780 0.9%
30 140 5995 4164941 (0.01%) 2168.7 (0.69%) 4164724 1.1%
30 140 6014 3462920 (0.01%) 1426.9 (0.35%) 3462857 1.4%
35 150 10020 3126763 (0.02%) 2511.8 (0.44%) 3126385 2.4%
35 150 10040 5937585 (0.01%) 3484.7 (0.55%) 5936733 1.1%
35 150 10072 6663950 (0.01%) 1183.6 (0.54%) 6663481 0.9%

function. After this move, we possibly increase the number of fibers outgoing
cabinet j′.

Tables 1 shows a comparison of the two approaches, reporting computational
results averaged over 5 runs for each problem instance. Even if both approaches
are interesting, the CBLS outperforms the LP-RR both in quality and compu-
tation time. Table 2 reports the results for a set of realistic instances based on
the street graph of the city of Rome. Note that CBLS computes near-optimal
solution in short time.
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