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1 Introduction

We consider here the problem of the approximation of m symmetric relations
defined on a same finite set X into a so-called median equivalence relation

(see below and [1]), with in particular two special cases: the one for which the
m symmetric relations are equivalence relations (Régnier’s problem [4]), and
the one of the approximation of only one symmetric relation (m = 1) by an
equivalence relation (Zahn’s problem [6]). These problems arise for instance
from the field of classification or clustering: in this case, X is a set of entities
(which can be objects, people, projects, propositions, alternatives, and so on)
that we want to gather in subsets of X in such a way that the elements of any
such subset can be considered as similar while the objects of different subsets
can be considered as dissimilar. Each symmetric relation is associated with a
criterion specifying, for any pair {x, y} of entities, whether x and y are similar
or not. Then we try to find the best compromise between all these criteria. This
leads us, in Section 2, to state this problem as a graph theoretical problem,
that we call CPP for clique partitioning problem. As this problem is NP-hard,
we design in Section 3 a branch and bound algorithm to solve this problem,
based on a Lagrangean relaxation method for the evaluation function.

2 The clique partitioning problem

The problem that we consider here can be mathematically described as follows.
We are given a collection Π = (S1, S2, ..., Sm) of m symmetric binary relations
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Sk, 1 ≤ k ≤ m, all defined on a same finite set X of n elements (Régnier’s
problem [4] corresponds to the case for which all the relations Sk are equi-
valence relations; Zahn’s problem [6] corresponds to the case for which m is
equal to 1). We consider the number δ(R, S) of disagreements between two
binary relations R and S:

δ(R, S) = |{(i, j) ∈ X2 with [iRj and not iSj] or [iSj and not iRj]}|.

Then, for any equivalence relation E, we consider the remoteness ∆(Π, E) =
∑m

k=1 δ(Sk, E), measuring the total number of disagreements between Π and
E. Our problem thus consists in computing an equivalence relation E∗, called
a median equivalence relation of Π, which minimizes ∆ over the set E of all
the equivalence relations defined on X:

∆(Π, E∗) = min
E∈E

∆(Π, E).

The computation of E∗ is NP-hard [5], and remains so even for Régnier’s
problem or for Zahn’s problem.

To state this problem as a 0-1 linear programming problem, let sk = (sk
ij)(i,j)∈X2

(1 ≤ k ≤ m) be the binary vector defined by: sk
ij = 1 if iSkj (i.e. if i and j are

put together by Sk), and sk
ij = 0 otherwise. Similarly, let (xij)(i,j)∈X2 denote

the vector associated with E: xij = 1 if iEj, xij = 0 otherwise. It is easy to
obtain the following:

δ(Sk, E) =
∑

(i,j)∈X2

|sk
ij − xij | =

∑

(i,j)∈X2

(sk
ij − xij)

2 =
∑

(i,j)∈X2

(sk
ij + (1 − 2sk

ij)xij)

because of the binary property of the quantities sk
ij and xij . Then we obtain,

for the remoteness:

∆(Π, E) =
m∑

k=1

∑

(i,j)∈X2

sk
ij +

m∑

k=1

∑

(i,j)∈X2

(1 − 2sk
ij)xij = C +

∑

(i,j)∈X2

wijxij

where C =
∑m

k=1

∑

(i,j)∈X2 sk
ij is a constant and with, for (i, j) ∈ X2:

wij =
m∑

k=1

(1 − 2sk
ij) = m − 2|{k with 1 ≤ k ≤ m and iSkj}|.

So, minimizing ∆(Π, E) is the same as minimizing
∑

(i,j)∈X2 wijxij . Moreover,
the constraints to state that E must belong to E are the following:

• symmetry: ∀(i, j) ∈ X2, xij = xji;
• transitivity: ∀(i, j, h) ∈ X3 with i 6= j 6= h 6= i, xij + xjh − xih ≤ 1.

If we add the binary constraints: ∀(i, j) ∈ X2, xij ∈ {0, 1}, we obtain our 0-1
linear programming problem.

44



We now may state this problem as a graph theoretic one. For this, we associate
the complete graph Kn to Π, and we weight every edge {i, j} of Kn by wij .
Then the variables xij equal to 1 define cliques (i.e. complete subgraphs) of Kn,
and the value of ∆(Π, E) is equal to the sum of the weights of the edges with
both extremities inside a same clique. Hence our clique partitioning problem
CPP. Note that the weights of the edges can be non-positive or non-negative
integers. Moreover, the number of cliques into which we want to partition Kn

is not given. Finally, CPP can be stated as follows: given a complete graph
Kn = (X, A) whose edges {i, j} are weighted by non-positive or non-negative
integers wij, partition X into p subsets X1, X2, ..., Xp, where p is not given,
so that

∑p
h=1

∑

(i,j)∈(Xh)2 wij (i.e. the sum of the weights of the edges inside the
cliques) is minimum.

3 The branch and bound method

To solve CPP, we design a branch and bound method BB. We briefly depict
the main ingredients of BB.

The initial bound is provided by a metaheuristic, namely the noising methods

[2], [3]. The noising methods usually compute very good solutions, quite often
optimal, though we cannot know whether these solutions are indeed optimal.

The BB-tree is built as follows. The vertices vi of Kn are integers belonging
to {1, 2, ..., n}. A partition with p subsets X1, X2, ..., Xp is represented as:

v1, v2, ..., vq1
︸ ︷︷ ︸

X1

| vq1+1, vq1+2, ..., vq2
︸ ︷︷ ︸

X2

|...| vqp−1+1, vqp−1+2, ..., vqp
︸ ︷︷ ︸

Xp

With such an encoding, a partition admits several representations. To avoid
this, we suppose that the vertices are ordered by increasing value within a
subset and subsets are ordered according to their smallest vertices; with the
above notation, it means that we have: 1 = v1 < v2 < ... < vq1

, vq1+1 < vq1+2 <

... < vq2
, ..., vqp−1+1 < vqp−1+2 < ... < vqp

, and v1 < vq1+1 < ... < vqp−1+1.

The subsets are progressively constructed. A node N of the BB-tree corres-
ponds to the beginning of a partition encoding, something like:

v1, v2, ..., vq1
︸ ︷︷ ︸

X1

| vq1+1, vq1+2, ..., vq2
︸ ︷︷ ︸

X2

|...| vqh−1+1, vqh−1+2, ..., vqh−1+t
︸ ︷︷ ︸

Xh

We extend N by at most n − qh−1 − t + 1 new branches. The first branch is
obtained by closing the current subset Xh and by creating a new subset Xh+1

which will contain at least vqh−1+t+1. The other branches correspond with the
possibilities to expand the current class Xh by adding an extra vertex (greater
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than vqh−1+t) to it: vqh−1+t+1, or vqh−1+t+2 but not vqh−1+t+1, or vqh−1+t+3 but
neither vqh−1+t+1 nor vqh−1+t+2, and so on...

Three evaluation functions F1, F2, F3 are designed to evaluate the quality
of every node N of the BB-tree. They can be split into two parts. The first
part is the same for the three functions: it takes into account the contribution
of the vertices already dispatched inside the subsets of the partition under
construction associated with N ; for this, we only sum the weights of the edges
with both extremities in a same subset. The second part depends on the
function. For F1, we add all the negative weights of the edges with at least
one extremity greater than vqh−1+t. In F2, we sharpen the design of F1 by
considering some triples of vertices (triangles) {a, b, c} and by noting that if
the weights of the edges between a, b and c have not the same sign, then the
contribution of {a, b, c} cannot be the sum of the negative edges, as in F1; we
design a greedy algorithm to choose these triangles in order to improve F1 as
much as possible. The last function, F3, is the most sophisticated. It is based
on the Lagrangean relaxation of the transitivity constraints (see above).

Other ingredients, not described here, allow us also to cut branches of the
BB-tree. During the talk, we will discuss the efficiency of the evaluation func-
tions and of the other ingredients, based on experiments dealing with different
kinds of graphs: instances of Régnier’s problem or of Zahn’s problem, instances
coming from the literature, random instances, or instances with special com-
binatorial or algorithmic properties.
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