A branch and bound method for a clique partitioning problem

Irène Charon, ${ }^{a}$ Olivier Hudry, ${ }^{a}$
${ }^{\text {a }}$ Télécom ParisTech \& CNRS - LTCI UMR5141, 46, rue Barrault, 75634 Paris Cedex 13, France

Key words: Branch and bound, classification, clique partitioning of a graph, clustering, combinatorial optimization, graphs, Lagrangean relaxation, median equivalence relation, Régnier's problem, Zahn's problem

1 Introduction

We consider here the problem of the approximation of m symmetric relations defined on a same finite set X into a so-called median equivalence relation (see below and [1]), with in particular two special cases: the one for which the m symmetric relations are equivalence relations (Régnier's problem [4]), and the one of the approximation of only one symmetric relation $(m=1)$ by an equivalence relation (Zahn's problem [6]). These problems arise for instance from the field of classification or clustering: in this case, X is a set of entities (which can be objects, people, projects, propositions, alternatives, and so on) that we want to gather in subsets of X in such a way that the elements of any such subset can be considered as similar while the objects of different subsets can be considered as dissimilar. Each symmetric relation is associated with a criterion specifying, for any pair $\{x, y\}$ of entities, whether x and y are similar or not. Then we try to find the best compromise between all these criteria. This leads us, in Section 2, to state this problem as a graph theoretical problem, that we call CPP for clique partitioning problem. As this problem is NP-hard, we design in Section 3 a branch and bound algorithm to solve this problem, based on a Lagrangean relaxation method for the evaluation function.

2 The clique partitioning problem

The problem that we consider here can be mathematically described as follows. We are given a collection $\Pi=\left(S_{1}, S_{2}, \ldots, S_{m}\right)$ of m symmetric binary relations
$S_{k}, 1 \leq k \leq m$, all defined on a same finite set X of n elements (Régnier's problem [4] corresponds to the case for which all the relations S_{k} are equivalence relations; Zahn's problem [6] corresponds to the case for which m is equal to 1). We consider the number $\delta(R, S)$ of disagreements between two binary relations R and S :

$$
\delta(R, S)=\mid\left\{(i, j) \in X^{2} \text { with }[i R j \text { and not } i S j] \text { or }[i S j \text { and not } i R j]\right\} \mid .
$$

Then, for any equivalence relation E, we consider the remoteness $\Delta(\Pi, E)=$ $\sum_{k=1}^{m} \delta\left(S_{k}, E\right)$, measuring the total number of disagreements between Π and E. Our problem thus consists in computing an equivalence relation E^{*}, called a median equivalence relation of Π, which minimizes Δ over the set \mathcal{E} of all the equivalence relations defined on X :

$$
\Delta\left(\Pi, E^{*}\right)=\min _{E \in \mathcal{E}} \Delta(\Pi, E)
$$

The computation of E^{*} is NP-hard [5], and remains so even for Régnier's problem or for Zahn's problem.

To state this problem as a 0-1 linear programming problem, let $s^{k}=\left(s_{i j}^{k}\right)_{(i, j) \in X^{2}}$ $(1 \leq k \leq m)$ be the binary vector defined by: $s_{i j}^{k}=1$ if $i S_{k} j$ (i.e. if i and j are put together by S_{k}), and $s_{i j}^{k}=0$ otherwise. Similarly, let $\left(x_{i j}\right)_{(i, j) \in X^{2}}$ denote the vector associated with $E: x_{i j}=1$ if $i E j, x_{i j}=0$ otherwise. It is easy to obtain the following:

$$
\delta\left(S_{k}, E\right)=\sum_{(i, j) \in X^{2}}\left|s_{i j}^{k}-x_{i j}\right|=\sum_{(i, j) \in X^{2}}\left(s_{i j}^{k}-x_{i j}\right)^{2}=\sum_{(i, j) \in X^{2}}\left(s_{i j}^{k}+\left(1-2 s_{i j}^{k}\right) x_{i j}\right)
$$

because of the binary property of the quantities $s_{i j}^{k}$ and $x_{i j}$. Then we obtain, for the remoteness:

$$
\Delta(\Pi, E)=\sum_{k=1}^{m} \sum_{(i, j) \in X^{2}} s_{i j}^{k}+\sum_{k=1}^{m} \sum_{(i, j) \in X^{2}}\left(1-2 s_{i j}^{k}\right) x_{i j}=C+\sum_{(i, j) \in X^{2}} w_{i j} x_{i j}
$$

where $C=\sum_{k=1}^{m} \sum_{(i, j) \in X^{2}} s_{i j}^{k}$ is a constant and with, for $(i, j) \in X^{2}$:

$$
w_{i j}=\sum_{k=1}^{m}\left(1-2 s_{i j}^{k}\right)=m-2 \mid\left\{k \text { with } 1 \leq k \leq m \text { and } i S_{k} j\right\} \mid .
$$

So, minimizing $\Delta(\Pi, E)$ is the same as minimizing $\sum_{(i, j) \in X^{2}} w_{i j} x_{i j}$. Moreover, the constraints to state that E must belong to \mathcal{E} are the following:

- symmetry: $\forall(i, j) \in X^{2}, x_{i j}=x_{j i}$;
- transitivity: $\forall(i, j, h) \in X^{3}$ with $i \neq j \neq h \neq i, x_{i j}+x_{j h}-x_{i h} \leq 1$.

If we add the binary constraints: $\forall(i, j) \in X^{2}, x_{i j} \in\{0,1\}$, we obtain our 0-1 linear programming problem.

We now may state this problem as a graph theoretic one. For this, we associate the complete graph K_{n} to Π, and we weight every edge $\{i, j\}$ of K_{n} by $w_{i j}$. Then the variables $x_{i j}$ equal to 1 define cliques (i.e. complete subgraphs) of K_{n}, and the value of $\Delta(\Pi, E)$ is equal to the sum of the weights of the edges with both extremities inside a same clique. Hence our clique partitioning problem CPP. Note that the weights of the edges can be non-positive or non-negative integers. Moreover, the number of cliques into which we want to partition K_{n} is not given. Finally, CPP can be stated as follows: given a complete graph $K_{n}=(X, A)$ whose edges $\{i, j\}$ are weighted by non-positive or non-negative integers $w_{i j}$, partition X into p subsets $X_{1}, X_{2}, \ldots, X_{p}$, where p is not given, so that $\sum_{h=1}^{p} \sum_{(i, j) \in\left(X_{h}\right)^{2}} w_{i j}$ (i.e. the sum of the weights of the edges inside the cliques) is minimum.

3 The branch and bound method

To solve CPP, we design a branch and bound method BB. We briefly depict the main ingredients of BB .

The initial bound is provided by a metaheuristic, namely the noising methods [2], [3]. The noising methods usually compute very good solutions, quite often optimal, though we cannot know whether these solutions are indeed optimal.

The BB-tree is built as follows. The vertices v_{i} of K_{n} are integers belonging to $\{1,2, \ldots, n\}$. A partition with p subsets $X_{1}, X_{2}, \ldots, X_{p}$ is represented as:

$$
\underbrace{v_{1}, v_{2}, \ldots, v_{q_{1}}}_{X_{1}}|\underbrace{v_{q_{1}+1}, v_{q_{1}+2}, \ldots, v_{q_{2}}}_{X_{2}}| \ldots \mid \underbrace{v_{q_{p-1}+1}, v_{q_{p-1}+2}, \ldots, v_{q_{p}}}_{X_{p}}
$$

With such an encoding, a partition admits several representations. To avoid this, we suppose that the vertices are ordered by increasing value within a subset and subsets are ordered according to their smallest vertices; with the above notation, it means that we have: $1=v_{1}<v_{2}<\ldots<v_{q_{1}}, v_{q_{1}+1}<v_{q_{1}+2}<$ $\ldots<v_{q_{2}}, \ldots, v_{q_{p-1}+1}<v_{q_{p-1}+2}<\ldots<v_{q_{p}}$, and $v_{1}<v_{q_{1}+1}<\ldots<v_{q_{p-1}+1}$.

The subsets are progressively constructed. A node N of the BB-tree corresponds to the beginning of a partition encoding, something like:

$$
\underbrace{v_{1}, v_{2}, \ldots, v_{q_{1}}}_{X_{1}}|\underbrace{v_{q_{1}+1}, v_{q_{1}+2}, \ldots, v_{q_{2}}}_{X_{2}}| \cdots \mid \underbrace{v_{q_{h-1}+1}, v_{q_{h-1}+2}, \ldots, v_{q_{h-1}+t}}_{X_{h}}
$$

We extend N by at most $n-q_{h-1}-t+1$ new branches. The first branch is obtained by closing the current subset X_{h} and by creating a new subset X_{h+1} which will contain at least $v_{q_{h-1}+t+1}$. The other branches correspond with the possibilities to expand the current class X_{h} by adding an extra vertex (greater
than $v_{q_{h-1}+t}$) to it: $v_{q_{h-1}+t+1}$, or $v_{q_{h-1}+t+2}$ but not $v_{q_{h-1}+t+1}$, or $v_{q_{h-1}+t+3}$ but neither $v_{q_{h-1}+t+1}$ nor $v_{q_{h-1}+t+2}$, and so on...

Three evaluation functions F_{1}, F_{2}, F_{3} are designed to evaluate the quality of every node N of the BB-tree. They can be split into two parts. The first part is the same for the three functions: it takes into account the contribution of the vertices already dispatched inside the subsets of the partition under construction associated with N; for this, we only sum the weights of the edges with both extremities in a same subset. The second part depends on the function. For F_{1}, we add all the negative weights of the edges with at least one extremity greater than $v_{q_{h-1}+t}$. In F_{2}, we sharpen the design of F_{1} by considering some triples of vertices (triangles) $\{a, b, c\}$ and by noting that if the weights of the edges between a, b and c have not the same sign, then the contribution of $\{a, b, c\}$ cannot be the sum of the negative edges, as in F_{1}; we design a greedy algorithm to choose these triangles in order to improve F_{1} as much as possible. The last function, F_{3}, is the most sophisticated. It is based on the Lagrangean relaxation of the transitivity constraints (see above).

Other ingredients, not described here, allow us also to cut branches of the BB-tree. During the talk, we will discuss the efficiency of the evaluation functions and of the other ingredients, based on experiments dealing with different kinds of graphs: instances of Régnier's problem or of Zahn's problem, instances coming from the literature, random instances, or instances with special combinatorial or algorithmic properties.

References

[1] J.-P. Barthélemy, B. Monjardet: The median procedure in cluster analysis and social choice theory, Mathematical Social Sciences 1, 1981, 235-267.
[2] I. Charon, O. Hudry: Noising methods for a clique partitioning problem, Discrete Applied Mathematics 154 (5), 2006, 754-769.
[3] I. Charon, O. Hudry: Self-tuning of the noising methods, Optimization 58 (7), 2009, 1-21.
[4] S. Régnier: Sur quelques aspects mathématiques des problèmes de classification automatique, I.C.C. Bulletin 4, Rome, 1965.
[5] Y. Wakabayashi: The Complexity of Computing Medians of Relations, Resenhas, 3 (3), 1998, 323-349.
[6] C.T. Zahn: Approximating symmetric relations by equivalence relations, SIAM Journal on Applied Mathematics, 12, 1964, 840-847.

