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1 The Train-Unit Assignment Problem

We study the Train-Unit Assignment Problem (TUAP) (see e.g. [2]), calling
for an optimal assignment of train units (which are self-contained trains with
an engine and passenger seats) to a given set of timetabled train trips. More
precisely, each trip has a departure station, an arrival station, a departure time
and an arrival time, and requires a number of passenger seats. Train units can
be classified in different types: each train unit has a number of available seats
and can be combined with other units in order to fulfill the seat requests. For
each train trip a maximum number of train units that can be combined is
given. In addition, sequencing constraints between trips must be satisfied: a
pair of trips can be in a sequence for a train unit if the time elapsing between
the arrival of the first one and the departure of the second one is large enough
to allow the corresponding train unit to travel from the arrival station of the
first one to the departure station of the second one. Finally, each train unit has
to undergo a maintenance operation every fixed number of days, which requires
a certain amount of time, as well as the transfer to and from the maintenance
station. The goal is to minimize the number of train units globally used, while
satisfying the seat requests, the sequencing constraints and the maintenance
constraints.
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2 Solution method

Let n be the number of trips and p the number of train unit types. Each trip
j ∈ {1, . . . , n} is defined by a request rj , given by the required number of
passenger seats, a maximum number uj of train units that can be assigned
to the trip, and its timetable. Each train unit type k ∈ {1, . . . , p} is defined
by a number dk of available train units and an associated capacity sk, given
by the number of available seats. We consider the natural and well-known
Integer Linear Programming (ILP) with arc variables, based on a canonical
graph representation of the problem (see e.g. [1]). Let G = (V, A) be a directed
acyclic multigraph, in which nodes correspond to trips, and the arc set A is
partitioned into p subsets A1, . . . , Ap, where Ak is associated with train units
of type k. The sequencing constraints are implicitly represented by the graph.
In particular, arc (i, j)k exists whenever the time between the arrival of trip
i and the departure of trip j allows a train unit of type k to travel from the
arrival station of trip i to the departure station of trip j. Let us introduce
an integer variable xk

ij (k ∈ {1, . . . , p}, i, j ∈ {1, . . . , n}), that indicates the
number of times that arc (i, j)k is selected in the solution, i.e., the number
of train units of type k that execute trip i before trip j in the associated
sequence. Moreover, let ck

ij denote the cost of arc (i, j)k, corresponding to the
time in minutes elapsing between the departure of the starting node and the
departure of the ending node. The ILP reads as follows:
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The objective is to minimize the overall cost of the selected arcs, equal to 1440
(the number of minutes in a day) times the number of the train units globally
used. Constraints (2) express the flow conservation. Constraints (3) forbid to
use more than the available train units for each type. Constraints (4) impose
to cover each trip with the corresponding seat request. Constraints (5) impose
a bound on the number of train units that can be used to cover each trip.
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Note that the maintenance constraints are not introduced in the formulation,
since they would be complex to model; we take them into account directly in
the heuristic algorithm.

The approach in [1], based on solving LP relaxations by general-purpose LP
software, considers an alternative equivalent ILP formulation with path vari-
ables, whose LP relaxation is much faster to solve (modulo using column gen-
eration). In this work, we consider a Lagrangian-relaxation based approach,
which nicely combines with the ILP above. Specifically, we first replace con-
straints (5) by the weaker

n∑

i=1

xk
ij ≤ uj , k ∈ {1, . . . , p}, j ∈ {1, . . . , n}, (7)

which impose that each train unit of type k can cover each trip j at most
uj times. Then, we relax in a Lagrangian way constraints (3) and (4), by
using nonnegative Lagrangian multipliers λj , (j ∈ {1, . . . , n}) and σk, (k ∈
{1, . . . , p}), respectively.

The resulting Lagrangian relaxed problem decomposes onto p independent
subproblems, one for each train unit type. Let c̃k

ij := (ck
ij −λjs

k +σkc
k
ij) be the

Lagrangian cost for each arc (i, j)k ∈ A. We impose a null Lagrangian cost
(c̃k

ii := 0) for loops (i, i)k for each vertex i ∈ V (that had originally infinity
cost). Thus, the subproblem associated with a train unit type k calls for the
minimization of

∑n
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k
ij subject to (2) and (7). Moreover, the pres-

ence of zero-cost loops allows us to replace inequality by equality in (7). It is
well known that all vertices of the feasible region of this subproblem are inte-
ger for uj integer and the associated constraint matrix is totally unimodular.
Moreover, in the particular case, arising in our case study, in which uj does not
depend on j, we can replace uj with u for k ∈ {1, . . . , p} and j ∈ {1, . . . , n}.
This makes the subproblem equivalent to an Assignment Problem (AP), ob-
tained by replacing u by 1 in (7), the correspondence between solutions x̄

of the subproblem and ȳ of AP being given by x̄ = uȳ. As is well known,
the assignment problem can be solved in O(n3) time. In order to find good
Lagrangian multipliers we apply a standard iterative subgradient procedure.

Besides yielding a valid lower bound on the optimal solution value, the best
Lagrangian multipliers λ∗, σ∗ found throughout the iterations and the corre-
sponding reduced costs c̄k

ij := ck
ij −λ∗

js
k +σ∗

kc
k
ij − w̄k

i − v̄k
j , where w̄k and v̄k are

the optimal AP dual variables associated with the assignment constraints, are
used to drive the following constructive Lagrangian heuristic algorithm. We
order the train unit types for decreasing capacity values, and construct the
workload for each train unit, until either all the trips have been covered or all
the train units have been used (in this case, we apply a local search procedure
to obtain a feasible solution). The construction starts with the selection of
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a trip whose departure is in the beginning of the day. Then, we choose the
following trips by assigning to each one a score that takes into account the
reduced costs, the original costs and how “well” the current train unit can
cover the trip (taking into account which other train units are still available).
In addition, we give a prize to the arcs that allow to perform maintenance,
until we reach the number of necessary maintenance operations. Every time
a trip is selected in the solution, we update its number of seats and the re-
duced cost of each arc entering the corresponding node. In order to decide
how to end the workload of the current train unit type, for each selected trip
in the workload we solve the relaxed problem on the residual train units and
trips. The solution value of the reduced relaxed problem gives a lower bound
on the global number of train units that are needed to cover all the residual
trips. When no more train units are available of the current type, we end the
workload with the trip giving the smallest solution value.

3 Computational Experiments

We present some preliminary computational experiments on a set of real-world
instances for an operator running trains in a regional area, and compare the
results with the approach presented in [1], with and without imposing the
maintenance constraints. The tests were performed on a PC Pentium 4, 3.2
GHz, 2 GB RAM, and using Cplex 9.0 as an LP-solver in [1]. The results are
presented in Table 1, showing that the proposed approach produces compara-
ble results within much shorter computing time (expressed in seconds).

Lagr. heur. [1] heur. Lagr. heur. maint. [1] heur. maint.

inst. n p value time value time value time value time

1 85 1 2 0 2 0 2 0 2 0

2 120 1 4 0 4 0 4 1 4 5

3 302 1 17 4 17 288 17 5 17 544

4 208 2 26 4 25 17 27 3 25 19

5 364 2 20 18 20 1912 21 20 20 3899

Table 1
Comparison on a set of real-world instances in the case without or with the main-
tenance constraints.
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