
Bisimplicial Edges in Bipartite Graphs ⋆

Matthijs Bomhoff ∗ Bodo Manthey

Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

Bisimplicial edges in bipartite graphs are closely related to pivots in Gaussian elim-
ination that avoid turning zeroes into non-zeroes. We present a new deterministic
algorithm to find such edges in bipartite graphs. The expected time complexity of
our new algorithm is O

(

n2 log n
)

on random bipartite graphs in which each edge
is present with a fixed probability p, a polynomial improvement over the fastest
algorithm found in the existing literature.

Key words: bipartite graphs, random graphs, algorithms, Gaussian elimination

1 Introduction

When applying Gaussian elimination to a square n × n matrix M containing
some elements with value zero, the choice of pivots can often determine the
amount of zeroes turned into non-zeroes during the process, the so called fill-in.
Some matrices even allow Gaussian elimination without any fill-in. Avoiding
fill-in has the nice property of bounding the required space for intermediate
results of the Gaussian elimination to the space required for storing the input
matrix M . This can be important for processing very large sparse matrices.
Even when fill-in cannot be completely avoided, it may still be worthwhile
to avoid it for several iterations, motivating the search for pivots that avoid
fill-in.

⋆ This work was supported by the Dutch Innovation Oriented Research Program
“Integral Product Creation and Realisation (IOP-IPCR)” of the Dutch Ministry of
Economic Affairs.
∗ Corresponding Author

Email addresses: m.j.bomhoff@utwente.nl (Matthijs Bomhoff),
b.manthey@utwente.nl (Bodo Manthey).

CTW2010, University of Cologne, Germany. May 25-27, 2010

If we assume subtracting a multiple of one row of M from another turns
at most one non-zero into a zero, we may restrict ourselves to considering
only {0, 1} matrices. Given such a square matrix M , we can construct the
bipartite graph G[M] with vertices corresponding to the rows and columns
in M , where vertices i and j are adjacent if and only if Mi,j is nonzero. The
{0, 1} matrices that allow Gaussian elimination without fill-in correspond to
the class of perfect elimination bipartite graphs [1]. Central to the recognition
of this class of graphs is the notion of a bisimplicial edge that corresponds
to an element of M that can be used as a pivot without causing fill-in. The
fastest algorithm for finding bisimplicial edges in the existing literature has a
time complexity equal to that of matrix multiplication [2,3], i.e., O (n2.376) [4].
We present a new deterministic algorithm for finding a bisimplicial edge in a
bipartite graph, if one exists, and show that its expected time complexity on
random bipartite graphs where each edge is present with some fixed probability
p is O (n2 log n).

2 Bisimplicial Edges

We denote by Γ (u) the neighbors of a vertex u.

Definition 1 An edge uv of a bipartite graph G = (U, V, E) is called bisim-
plicial, if the induced subgraph G[Γ (u) ∪ Γ (v)] is a complete bipartite graph.

Clearly, for a given edge uv we can determine in O (|E|) time if it is a bisim-
plicial edge by simply checking all edges adjacent to it. So a simple algorithm
to find a bisimplicial edge in a bipartite graph G, if one exists, takes O (|E|2)
time.

Goh and Rotem [2] present a faster algorithm based on the following: A row
Ma,∗ is said to majorize a row Mb,∗ if for each 1 ≤ j ≤ n we have Ma,j ≥ Mb,j .
According to this definition, every row majorizes itself.

Theorem 2 (Goh and Rotem [2]) Let M be an n × n {0, 1} matrix rep-
resenting a bipartite graph G = (U, V, E). Let ℓi be the number of rows in M

that majorize row i and let sj be the sum of the entries in column j of M .
Then Mi,j = 1 and ℓi = sj if and only if the edge uivj is a bisimplicial edge
of G.

Let Q = MMT , this implies ℓi is equal to the number of elements in the row
Qi,∗ that are equal to Qi,i (including Qi,i itself). Clearly, the time complexity
of finding a bisimplicial edge in G[M] is bounded by the time complexity of
the matrix multiplication. The fastest currently known algorithm for this has
a time complexity of O (n2.376) [4].

30

To improve on this, our new approach first selects a set of candidate edges.
If a bisimplicial edge exists, then one of our candidates is bisimplicial. Thus
we can restrict ourselves to checking the candidate edges for bisimpliciality.
By bounding the number of candidates we achieve an improved expected time
complexity. The following observation is the basis of our candidate selection
procedure.

Lemma 3 If an edge uv of a bipartite graph G = (U, V, E) is bisimplicial, we
must have δ (u) = minu′∈Γ(v) δ (u′) and δ (v) = minv′∈Γ(u) δ (v′).

Translated to the matrix M , this means that if Mi,j = 1, it can only correspond
to a bisimplicial edge if row i has a minimal number of ones over all the rows
that have a 1 in column j and column j has a minimal number of ones over all
the columns having a 1 in row i. In what follows, we will call the row (column)
in M with the minimal number of ones over all the rows (columns) in M the
smallest row (column). Using this observation, we construct an algorithm to
pick candidate edges that may be bisimplicial:

Algorithm 1 (1) Determine the row and column sums (ai and bj) for each
row and column of M .

(2) Determine for each row i the index ci of the smallest column with Mi,ci
=

1 (breaking ties by favoring the lowest index); or ci = 0 if row i has no
one.

(3) Determine for each column j the index rj of the smallest row with Mrj ,j =
1 (breaking ties by favoring the lowest index); or rj = 0 if column j has
no one.

(4) Mark Mi,j as a candidate edge if ci = j and rj = i.

Clearly, all steps in the algorithm can be performed in O (n2) time. Further-
more, the last step will mark at most n candidate edges (and at least 1).

Theorem 4 If G = (U, V, E) contains a bisimplicial edge, at least one of the
candidates marked by the algorithm will be bisimplicial.

As each of the candidates can subsequently be checked for bisimpliciality in
O (n2), we obtain a O (n3) algorithm that finds a single bisimplicial edge in a
bipartite graph G, if one exists, without using matrix multiplication. By itself,
this is not really interesting, as the worst case time complexity is not an im-
provement over previously known algorithms. However, for random bipartite
graphs, our new algorithm performs significantly better.

31

3 Asymptotic Expected Behavior on Random Graphs

For a fixed value of p ∈ (0, 1), we consider random bipartite graphs from the
Gn,n,p model: i.e., we have n vertices in each vertex class, and each edge is
present with probability p. Such a random graph corresponds to a stochastic
n × n {0, 1} matrix M with P [Mi,j = 1] = p. We denote by random variable
Xi the {0, 1} vector that forms row i of M and use |Xi| to denote the sum of
its elements. If we order the Xi vectors according to the number of ones they
contain (breaking ties by favoring lower values of i), we denote by X(1) the
row with the least number of ones, by X(2) the row with the second-to-least
number etc.

Lemma 5 For any ε > 0 and sufficiently large n, we have

P

[

|X(1)| < (1 − ε)pn
]

≤
1

n
.

Lemma 6 For any p′, k with 0 < p′ < p and k ≥ 1 and sufficiently large n,
we have

P [Algorithm 1 selects more than k candidates] ≤ n(1 − p′)k +
1

n
.

From this, we immediately get a bound on the expected number of candidates
that our algorithm selects.

Theorem 7 For any p′ with 0 < p′ < p and sufficiently large n, we have

E [number of candidates selected by Algorithm 1] ≤ 2 + 2 log(1−p′)

1

n
.

Corollary 8 For any fixed p, the expected time complexity of finding a bisim-
plicial edge or deciding there is none using Algorithm 1 is O (n2 log n).

References

[1] Martin Charles Golumbic and Clinton F. Goss. Perfect elimination and chordal
bipartite graphs. J. Graph Theory, 2(2):155–163, 1978.

[2] L. Goh and D. Rotem. Recognition of perfect elimination bipartite graphs.
Inform. Process. Lett., 15(4):179–182, 1982.

[3] Jeremy P. Spinrad. Recognizing quasi-triangulated graphs. Discrete Appl.

Math., 138(1-2):203–213, 2004.

[4] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. J. Symbolic Comput., 9(3):251–280, 1990.

32

