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1 Introduction

Global Optimization and Mixed-Integer Nonlinear Programming problems
such as min{f(x) | gL ≤ g(x) ≤ gU ∧ xL ≤ x ≤ xU ∧ ∀j ∈ Z (xj ∈ Z)}, where
f : Rn → R, g : Rn → Rm, gL, gU ∈ Rm, xL, x, xU ∈ Rn and Z ⊆ {1, . . . , n},
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are usually solved to ε-guaranteed approximation by the spatial Branch-and-
Bound (sBB) algorithm [2], a variant of the usual Branch-and-Bound for deal-
ing with nonlinear, possibly nonconvex f, g. Since the gap between the original
problem P and its convex relaxation P̄ is due both to integral variable restric-
tions being lifted as well as nonconvex functions being replaced by a convex
relaxation, sBB is able to branch at continuous variables as well as integer
ones. If x̄ solves P̄ , the standard disjunction used at a node in the sBB search
tree is xj ≤ x̄j ∨xj ≥ x̄j , the more usual one xj ≤ ⌊x̄j⌋∨xj ≥ ⌈x̄j⌉ being used
only if j ∈ Z.

At any sBB node, it is important to make sure that the variable ranges xL ≤
x ≤ xU for that node are as tight as the constraint restrictions gL ≤ g(x) ≤ gU

allow. Letting F(P ) be the feasible region of P , we would wish to replace
X0 = [xL, xU ] with X̃ = [x̃L, x̃U ] such that x̃L

i = minx∈F(P ) xi and x̃U
i =

maxx∈F(P ) xi for all i ≤ n. Since these 2n problems are as hard as P , we relax
these requirements. There are two standards relaxations: Optimization Based
Bounds Tightening (OBBT) [3,2] and Feasibility Based Bounds Tightening
(FBBT) [1,2]. The former consists in replacing F(P ) with F(P̄ ). The latter,
whose convergence properties are the object of this paper, is also known in
Constraints Programming as a range reduction device. FBBT relies on interval
arithmetic to derive the constraint ranges Ḡ = [ḡL, ḡU ] implied by the variable
ranges X0 at a given sBB node; if Ḡ ) G0 = [gL, gU ], FBBT uses inverse
interval arithmetic to propagate G0 back to tightened variable ranges X ′. This
basic FBBT step is iterated until convergence, generating an interval sequence
X0, X1, . . .. Since OBBT is usually slower than FBBT, OBBT is only applied
at the root sBB node and FBBT is applied at each node. Furthermore, to
simplify inverse interval arithmetic, FBBT often only considers a subset of
linear constraints in g. We shall therefore make the assumption — without
excessive loss of generality — that the symbol g denotes the linear constraints
of P , which we denote as gL ≤ Ax ≤ gU for some m × n matrix A.

The main trouble with FBBT is that its worst-case running time is infi-
nite in the size of its input (m, n, X0, A, G0). For example, on the instance

(2, 2, ([0, 1], [0, 1]), ( a −1
1 −a ), ([0, 0], [0, 0])), FBBT yields the infinite interval se-

quence ([0, 1/a2k−1], [0, 1/a2k]) whenever a > 1. Enforcing finite convergence
by terminating at the first iteration k such that L (Xk−1△Xk) ≤ ε, where
ε > 0 is given and L is the Lebesgue measure in R, yields a finite but un-
bounded worst-case time complexity: given a fixed iteration bound K there
are always instances where the FBBT takes longer than K iterations to reach
the ε termination condition (it suffices to decrease the value a appropriately).
In practice, such occurrences are far from rare, specially when the coefficients
of Ax are obtained by previous floating point operations, which might cause
a small but positive |ai − aj | even if ai, aj are supposed to be equal.
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In this paper we propose a new method for finding the limit point of the FBBT
sequence in polynomial time, based solving a Linear Program (LP) modelling
the greatest fixed point of the FBBT in the interval lattice.

2 Fixed points in the interval lattice

A lattice is a set Λ partially ordered by the relation ⊑ endowed with two
operations ⊔ (join), ⊓ (meet) such that x ⊑ x ⊔ y, y ⊑ x ⊔ y and x ⊓ y ⊑ x,
x ⊓ y ⊑ y. A lattice is complete if there exist elements ⊥,⊤ such that ⊥ ⊑
x ⊑ ⊤ for all x ∈ Λ. An operator F : Λ → Λ is monotone if x ⊑ y implies
F (x) ⊑ f(y) and deflationary if F (x) ⊑ x for all x ∈ Λ. The set of all real
intervals forms a lattice I under set inclusion ⊆, with set intersection ∩ as
meet and interval union (smallest interval including two intervals) ∪ as join.
The lattice structure is extended to arrays of intervals in the standard way. In
the rest of the paper, we let X be the interval vector (X1, . . . , Xn) ∈ I n and
G = (G1, . . . , Gm) ∈ I m.

FBBT consists of two phases: upwards and downwards propagation. We define
up : I n → I m and down : I m → I n as:

up(X)= (G0
i ∩

∑

j≤n

aijXj | i ≤ m) (1)

down(G)=
⋂

i≤m

(Xj ∩
1

aij

(Gi −
∑

ℓ 6=j

aiℓXℓ) | j ≤ n), (2)

where all arithmetic operators have interval semantics [5]. We now define the
FBBT iteration as an operator fbbt : I n → I n by fbbt(X) = down(up(X ∩
X0)) (we remark that our definition of fbbt depends on the initial interval
vector X0). Because all linear interval arithmetic and lattice operators are
monotone [5] and the composition of monotone operators is monotone [6],
fbbt is a monotone operator. Furthermore, because of the intersections, inter-
vals are changed only if the up and down actions make them smaller. Again,
the composition of deflationary operators is deflationary [6]: hence fbbt is
deflationary. By applying Thm. 12.9 in [6] to the dual lattice obtained by
inverting ⊤ and ⊥, ⊑ and ⊒, meet and join, we have that the sequence
(fbbtk(X) | k ≥ 0) converges to the greatest fixed point (gfp) of fbbt, i.e. the
largest (in the lattice order) interval vector X such that fbbt(X) = X. In other
words gfp(fbbt) = sup{X | X = fbbt(X)}. By Tarski’s Fixed Point Theorem
[7], equality can be replaced with ⊆. Furthermore, the operator | · | : I

n → R

given by |X| =
∑

j≤n(x
U
j − xL

j ) is monotone with the lattice order; since the
lattice is complete, we obtain:

gfp(fbbt) = argmax{|X| | X ⊆ fbbt(X)}, (3)

which we state as the following “interval linear problem” with parameters
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(m, n, X0, A, G0) and interval decision variable arrays X, G:

max{|X| | X ⊆ X0 ∧ G ⊆ up(X) ∧ X ⊆ down(G)}, (4)

It is possible to write an ordinary LP whose optimal solution is the same as
(4).

3 Computational validation

By way of preliminary computational validation of our approach, we solved
four significant instances using CPLEX 11.0 [4] on an Intel Core 2 Duo 1.4GHz
with 3GB RAM running Linux. For each instance we record the gfp, the
seconds of user CPU time to solution with either method, the absolute error
E =

∑
j≤n L (X∗△gfp(fbbt)) where X∗ is the output of either method (εFBBT =

10−6), and the relative error R of the FBBT obtained by letting it run only
for as long as the LP method takes to converge to the (precise) gfp’s.

Instance
x1 − 1.01x2 = 0
−1.01x1 + x2 = 0
x1, x2 ∈ [−1, 1]

x1 − 1.01x2 = 1
−1.01x1 +x2 = −1.01
x1, x2 ∈ [−1, 1]

x1 − 1.01x2 = 0
−1.01x1 + x2 = 0
x3 + 100x1 ≥ −100
x1, x2 ∈ [−1, 1], x3 ∈ [−10, 1]

x1 − 1.01x2 = −1.01
−1.01x1 + x2 = 1
x3 + 100x1 ≥ −100
x1, x2 ∈ [−1, 1], x3 ∈ [−10, 1]

gfp ([0,0],[0,0]) ([1,1],[0,0]) ([0,0],[0,0],[-10,0]) ([0,0],[1,1],[-10,0])

CPUFBBT 0.04 0.04 0.06 0.06

CPULP 0 0 0.004 0.004

EFBBT 1e-4 5e-5 1.5e-6 5e-5

ELP 0 0 0 0

RFBBT 2.29 1.47 2.33 1.21
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