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1 Introduction

Consider the following game, played on an (initially uncolored) graph G =
(V, E) with a color set C. The players, Alice and Bob, move alternately. A
move consists in coloring a vertex v ∈ V with a color c ∈ C in such a way
that adjacent vertices receive distinct colors. If this is not possible any more,
the game ends. Alice wins if every vertex is colored in the end, otherwise Bob
wins.

This type of game was introduced by Bodlaender [2]. He considers a variant,
which we will call game g, in which Alice must move first and passing is not
allowed. In order to obtain upper and lower bounds for a parameter associated
with game g, two other variants are useful. In the game B Bob may move first.
He may also miss one or several turns, but Alice must always move. In the
other variant, game A, Alice may move first and miss one or several turns, but
Bob must move. So in game B Bob has some advantages, whereas in game A

Alice has some advantages with respect to Bodlaender’s game.

For any variant G ∈ {B, g, A}, the smallest cardinality of a color set C, so
that Alice has a winning strategy for the game G is called G-game chromatic
number χG(G) of G.
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Let ω(G) be the clique number of a graph G. G is called B-perfect if, for
any induced subgraph H of G, χB(H) = ω(H). Analogously, we define A-
perfect with respect to the game A and g-perfect with respect to Bodlaender’s
game. These concepts were introduced in [1] and are game-theoretic analoga of
perfect graphs which are those graphs in which, for any induced subgraph H ,
the clique number equals the chromatic number χ(H). For any graph H ,

ω(H) ≤ χ(H) ≤ χA(H) ≤ χg(H) ≤ χB(H).

In particular, B-perfect graphs are g-perfect, g-perfect graphs are A-perfect,
and A-perfect graphs are perfect. We consider the problem of characterizing
these classes of graphs. The (probably most difficult) case of perfect graphs
has been solved by the Strong Perfect Graph Theorem [3]:

Theorem 1 (Chudnovsky, Robertson, Seymour, Thomas (2006)) A
graph is perfect if, and only if, it does neither contain an odd hole nor an odd
antihole as induced subgraph.

In this talk we will characterize B-perfect graphs.

2 Main result

Theorem 2 Let G be a graph. Then the following conditions are equivalent:

(i) G is B-perfect.
(ii) G does neither contain a C4, nor a P4, nor a split 3-star, nor a double fan

as induced subgraph (see Fig. 1).
(iii) For every (nonempty) component H of G, there is k ≥ 0, so that

H = K1 ∨ (H0 ∪ H1 ∪ . . . ∪ Hk),

where the Hi are complete graphs for i ≥ 1, and H0 is either empty or there
are p, q, r ∈ N, so that H0 = Kp ∨ Kr ∨ Kq (see Fig. 2).

C4 P4 split 3-star double fan

Fig. 1. 4 forbidden induced subgraphs for B-perfect graphs

PROOF. (i) =⇒ (ii): Winning strategies for Bob with ≤ 2 colors on C4 resp.
P4 resp. with ≤ 3 colors on the split 3-star resp. the double fan are obvious.
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Fig. 2. Structure of a component according to (iii)

(iii) =⇒ (i): We describe a winning strategy for Alice with ω(G) colors on
a graph G as in (iii). This is sufficient since every induced subgraph of G is
of the same type as described in (iii). For H0 = Kp ∨ Kr ∨ Kq let the Kp

and the Kq be the ears. Alice always responds to Bob’s moves in the same
component H (if Bob passes, in an arbitrary component). As long as Bob
does not play in an ear, Alice does not play in an ear; she first colors the
universal vertex of H . If Bob plays in an ear Kp, Alice colors a vertex in the
corresponding ear Kq with the same color (in case there is no uncolored vertex
she uses the strategy described before). If Alice is forced to start coloring an
ear, then all non-ear-vertices are colored, so a coloring of the ears is possible
without creating danger for a non-ear-vertex.

(ii) =⇒ (iii): We examine the structure of a graph G without induced P4, C4,
split 3-star, double fan. Let H be a component of G. We use the following
lemma of Wolk [5].

Lemma 3 (Wolk (1965)) A connected graph without induced C4 and P4 (a
so-called trivially perfect graph [4]) has a universal vertex.

So, H has a universal vertex v. Let H0, . . . , Hn be the components of H \ v.
Using the fact that H does not contain a double fan we can prove the following

Claim 4 At most one of the Hi is not complete.

Let H0 be the (only) component of H \ v which is not complete. Let K be the
largest clique of H0. We are done if we show:

Claim 5 H0 \ K induces a clique.

Claim 6 H0 \ K induces a module of H0 (i.e. if x ∈ K, either x is adjacent
to all y ∈ H0 \ K or to none.)

The proof of Claim 5 uses Lemma 3 again and the fact that H does neither
contain a split 3-star nor a P4. The proof of Claim 6 uses Claim 5 and the fact
that H does neither contain a P4 nor a C4.
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Claim 4, Claim 5 and Claim 6 together imply that H has the structure as
described in (iii): H0 \ K corresponds to the Kp, its neighbors correspond to
the Kr, and the rest of H0 corresponds to the Kq. This completes the proof
of Theorem 2. 2

3 Open problems

Problem 7 Characterize A-perfect graphs by forbidden induced subgraphs.

Problem 8 Characterize g-perfect graphs by forbidden induced subgraphs.

We discuss some partial results concerning these problems. The following are
already known, cf. [1]:

Theorem 9 A triangle-free graph G is A-perfect if, and only if, every com-
ponent of G is either K1 or Km,n or Km,n − e, where e is an edge.

Theorem 10 Complements of bipartite graphs are A-perfect.
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