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1 Introduction

This paper focuses on the weighted 1-median problem in R
d where the distance

of two points is measured by the Chebyshev-norm. So far this problem is
only well understood for d = 2. In this case, a linear time algorithm is given
in Hamacher [2]. In this note, we give the first combinatorial algorithm for
d ≥ 3. Furthermore, we discuss an optimality criterion for the d-dimensional
case which is based on linear programming. Using this optimality criterion
we are able to solve the inverse location problem. In the inverse problem the
facility is already given and the task is to modify the weights of the points at
minimum cost such that the given facility is a 1-median with respect to the
new weights.

2 The 1-median problem

The 1-median problem discussed in this note is defined as follows: Given n

points P1, . . . , Pn with Pi = (xi
1, . . . , x

i
d) ∈ R

d for i = 1, . . . , n and associated
non-negative weights wi the task is to find a point P ∗ = (x∗

1, . . . , x
∗
d) ∈ R

d
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such that
n∑

i=1

wi ‖Pi − P‖∞ ≥
n∑

i=1

wi ‖Pi − P ∗‖∞

for all P ∈ R
d. Note that using some straightforward techniques the problem

minP=(y1,...,yd)∈Rd

∑n
i=1 wi ‖Pi − P‖∞ can be written as a linear programming

problem in the following form:

min
n∑

i=1

wi zi (1)

s.t. zi + yj ≥ xi
j i = 1, . . . , n, j = 1, . . . , d (2)

zi − yj ≥ −xi
j i = 1, . . . , n, j = 1, . . . , d (3)

yj ∈ R, zi ∈ R j = 1, . . . , d, i = 1, . . . , n. (4)

Due to the fact that the variables yj do not appear in the objective function,
we use the well known Fourier-Motzkin elimination to get rid of these variables
in the constraints. We obtain the following equivalent problem

min
n∑

i=1

wi zi

s.t. zi + zk ≥ dik i = 1, . . . , n k = 1, . . . , n

zi ≥ 0 i = 1, . . . , n

where dik := maxj |x
i
j − xk

j |. It is easy to see that the corresponding dual
problem is the linear relaxation of the maximum-weight-b-matching problem
on a complete graph. It is shown in Antsee [1] that this graphtheoretical
problem can be solved by a min-cost-flow problem in a bipartite graph.

3 The Inverse Problem

An instance of the inverse problem is given by a set of n points P1, . . . , Pn ∈ R
d

with corresponding non-negative weights wi ≥ 0 and a point P0 (which may
coincide with a given point). The task is to find new weights w̃i ≥ 0 such that
P0 is a 1-median with respect to w̃i and ‖w − w̃‖1 is minimized. The problem
can be formulated in a compact form as follows:

min
n∑

i=1

|wi − w̃i|

s.t.
n∑

i=1

w̃i ‖Pi − P‖∞ ≥
n∑

i=1

w̃i ‖Pi − P0‖∞ ∀P ∈ R
d

w̃i ≥ 0 i = 1, . . . , n.

Before we give a combinatorial algorithm we state the following lemma.
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Lemma 1 There exists an optimal solution w∗ of the inverse location problem
such that wi ≥ w∗

i holds for all i = 1, . . . , n.

Let us consider the dual linear programming problem of (1)—(4). We intro-
duce non-negative dual variables ui,j for the constraints (2) and non-negative
dual variables vi,j for the constraints (3) and obtain

max
n∑

i=1

d∑

j=1

xi
j (ui,j − vi,j)

s.t.
d∑

j=1

(ui,j + vi,j) = wi i = 1, . . . , n

n∑

i=1

ui,j =
n∑

i=1

vi,j j = 1, . . . , d

ui,j ≥ 0, vi,j ≥ 0 i = 1, . . . , n, j = 1, . . . , d.

In order to interpret the dual problem let us construct the following flow
problem: Consider the bipartite graph G = (V1 ∪ V2, E) where the set V1

consists of n vertices, one for each point Pi of the 1-median problem. The set
V2 has exactly 2d vertices representing the closed cones

Q
≥
j := {x ∈ R

d : xj ≥ 0 and |xj| ≥ |xk| ∀k = 1, . . . , d}

and

Q≤
j := {x ∈ R

d : xj ≤ 0 and |xj| ≥ |xk| ∀k = 1, . . . , d}

for j = 1, . . . , d. We have an edge (Pi, Q
∼
j ) if Pi is in the cone Q∼

j (∼∈ {≤,≥}).
Moreover, we set the capacity u(e) of the edges of the bipartite graph to
infinity. Furthermore, we add a source s and the edges (s, Pi) for all i = 1, . . . , n
with u(s, Pi) = wi. Finally, we introduce a sink t and an edge from each vertex
in V2 to t with infinite capacity. We denote this network by I(P1, . . . , Pn, w).
Furthermore, a flow in I(P1, . . . , Pn, w) is called perfect if the flow on the edges
(Q≥

j , t) and (Q≤
j , t) is equal for all j. The value of a flow is denoted by v(f).

Now we can state the following theorem.

Theorem 2 Suppose we are given n points P1, . . . , Pn ∈ R
d with non-negative

weights wi ≥ 0. Then, the origin P ∗ = (0, . . . , 0) is an optimal solution of the
1-median problem if and only if there exists a perfect flow f in I(P1, . . . , Pn, w)
such that v(f) =

∑n
i=1 wi.

Example 3 Suppose we are given the following points: P1 = (−1, 3), P2 =
(2, 2), P3 = (4,−1), P4 = (2,−2), P5 = (0,−2) and P6 = (−4, 1) with the
weights w1 = 3, w2 = 1, w3 = 1, w4 = 2, w5 = 2 and w6 = 3. Then, the
corresponding instance I(P1, . . . , Pn, w) of the balancing flow problem admits
a perfect flow f with v(f) =

∑n
i=1 wi (see Figure 1). Thus, we can conclude

that the origin is a 1-median.
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Fig. 1. On the left hand side we are given an instance of the 1-median problem where
the cone Q

≥
1 is highlighted. The right hand side shows the graph of the balancing

flow problem (without the supersink t). On the edges a perfect flow is given.

It is easy to see that the inverse problem can be solved by the following
algorithm:

Algorithm 1 Step 1: Construct the instance I(P1, . . . , Pn, w)
Step 2: Find a perfect flow f in I(P1, . . . , Pn, w) that maximizes v(f)
Step 3: The new weights are given by w∗

i = f(s, Pi)

The main step is obviously the computation of a maximum perfect flow in Step
2. The maximum perfect flow problem can be reformulated as a parametric
flow problem, where capacities on the edges (Q≥

j , t) and (Q≤
j , t) are given by

a parameter λj . If we maximize

2
d∑

j=1

λj

such that there exists a flow f that saturates all the edges entering the super-
sink t, the flow f is a maximum perfect flow. This maximization problem is
closely related to parametric flow problems discussed in McCormick [3] and
can indeed be solved in polynomial time.
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